1.概览全景:首先,本书对GAN进行全景式的介绍,让读者能够了解GAN的技术起源、在应用领域的发展演变过程、在技术上面临的主要挑战,以及解决这些挑战的思路和对策。
2. 详解原理:其次,本书详细介绍了GAN的基本原理,即通过生成模型(Generative Model,G)和判别模型(Discriminative Model,D)的相互对抗,最终实现生成模型具备生成足够逼真的高维度数据(如图像或音乐)的能力。
3. 案例丰富:最后,本书介绍了几种常用的、有代表性的GAN模型实战,包括原始的GAN、DCGAN(基于深层卷积网络的GAN)、CGAN(有条件约束的GAN)、InfoGAN(自动捕获图像中关键特征的GAN)、SGAN(多层堆叠的GAN)、CycleGAN(循环一致的GAN)等。这些GAN模型涵盖了GAN在发展演变过程中各个阶段面临的挑战与对策,可让读者掌握各种各样的GAN的关键原理和实战代码。
展开