前言
基础篇
案例1 巧妇难为无米之炊:数据集的制作与加载
1.1 机器学习中的数据集
1.2 如何加载MATLAB自带的数据集
1.3 如何加载自己制作的数据集
1.4 如何加载公开数据集:以CIFAR-10为例
1.5 如何划分训练集与验证集
1.6 如何扩充数据样本集
案例2 小试牛刀:如何构建一个卷积神经网络
2.1 CNN的核心——“卷积”
2.2 卷积神经网络的结构及原理
2.3 从仿生角度看卷积神经网络
2.4 基于深度学习工具箱函数构造卷积神经网络
2.5 采用DeepNetworkDesigner实现卷积网络设计
2.6 其他与构建深度网络相关的函数
案例3 精雕细琢:如何训练一个卷积神经网绍
3.1 基本概念一点通
3.2 实例需求与实现步骤
3.3 构建卷积神经网络
3.4 训练卷积神经网络
3.5 例程实现与解析
应用篇
案例4 LeNet卷积神经网络的应用:红绿灯识别
4.1 LeNet卷积神经网络
4.2 基于改进LeNet的交通灯识别
4.3 例程实现与解析
案例5 AlexNet卷积神经网络的应用:基于迁移学习的图像分类
5.1 什么是迁移学习
5.2 从不同的角度看迁移学习
5.3 AlexNet网络的原理
5.4 基于AlexNet实现迁移学习的步骤
5.5 AlexNet的加载方法
5.6 如何对AlexNet进行改进以实现迁移学习
5.7 本节所用到的函数解析
5.8 例程实现与解析
5.9 采用DeepNetworkDesigner辅助实现迁移学习
案例6 VGG16卷积神经网络的应用:融合卷积神经网络与支持向量机的物体识别
……
实战篇
参考文献
展开