第1章绪论001
1.1金属双层管成形技术001
1.1.1冶金复合式001
1.1.2机械复合式003
1.2液压胀形技术006
1.2.1典型液压胀形006
1.2.2径压胀形007
1.2.3脉动液压胀形008
1.2.4冲击液压胀形009
1.3双层管液压成形研究现状011
1.3.1力学行为研究现状011
1.3.2塑性本构关系构建方法研究现状012
1.3.3成形规律研究现状013
1.3.4成形极限研究现状015
1.3.5加载路径优化研究现状016
第2章金属双层管冲击液压成形机理021
2.1引言021
2.2成形原理021
2.3内压力形成的理论分析022
2.3.1有预成形情况022
2.3.2无预成形情况027
2.4内压力形成的模拟分析031
2.4.1不同模具型腔截面边长对管材液压力变化及规律的研究 031
2.4.2不同冲击速度对管材液压力变化及规律的研究035
2.4.3不同内外管间隙对管材液压力变化及规律的研究036
2.5自然胀形区力学分析039
2.5.1管材动态力学分析039
2.5.2管材应力应变分析044
2.6小结048
第3章金属薄壁管冲击液压下塑性本构关系的构建051
3.1引言051
3.2金属薄壁管动态塑性本构模型选择052
3.3金属薄壁管冲击液压胀形试验研究054
3.3.1液压胀形试验系统054
3.3.2试验过程及数据处理057
3.3.3试验数据获取方法059
3.3.4等效应变和等效应力的确定061
3.4金属薄壁管动态塑性本构关系参数的确定066
3.4.1线性回归法确定本构关系参数066
3.4.2遗传算法确定本构关系参数068
3.5金属薄壁管动态塑性本构关系的有限元模拟验证073
3.5.1基于ANSYS Workbench的数值模拟分析073
3.5.2基于DYNAFORM的数值模拟分析079
3.5.3模拟结果与试验结果的对比分析083
3.6小结087
第4章金属双层管冲击液压成形规律研究089
4.1引言089
4.2合模区成形规律的研究089
4.2.1胀形高度089
4.2.2圆角半径091
4.2.3壁厚分布097
4.3自然胀形区成形规律的研究101
4.3.1应力应变101
4.3.2胀形高度114
4.3.3壁厚分布117
4.4小结121
第5章金属双层管冲击液压成形极限研究123
5.1引言123
5.2金属双层管成形极限分析123
5.2.1合模区的成形极限分析123
5.2.2自然胀形区的成形极限分析125
5.3载荷参数对金属双层管合模区成形极限的影响128
5.3.1载荷参数对管材最大胀形高度的影响128
5.3.2载荷参数对管材最小圆角半径的影响130
5.3.3载荷参数对管材最小壁厚的影响132
5.4小结133
第6章金属双层管冲击液压成形优化134
6.1引言134
6.2工艺参数及优化目标设计134
6.3响应面模型的设计135
6.3.1响应面模型的建立135
6.3.2响应面模型的验证136
6.4响应面模型的分析139
6.4.1方差分析139
6.4.2响应面分析141
6.5多目标优化与有限元模拟结果144
6.6金属双层管冲击液压成形试验研究144
6.6.1冲击液压成形试验方案144
6.6.2试验结果与讨论145
6.7小结149
第7章总结151
参考文献155
展开