搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
出版时间 :
无库存
Python数据分析与机器学习
0.00     定价 ¥ 75.00
泸西县图书馆
此书还可采购1本,持证读者免费借回家
  • ISBN:
    9787111704928
  • 作      者:
    周元哲
  • 出 版 社 :
    机械工业出版社
  • 出版日期:
    2022-06-01
收藏
编辑推荐

配套资源:源代码、教学课件、语料集、教学大纲、课后习题答案、程序安装包

获奖情况:

以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握数据分析的各类工具和库,了解传统机器学习的基本流程。

采用基于Python语言相关的分析库,便于学生更快地掌握数据分析和机器学习的基本思想,快速入门。

基于Sklearn介绍了数据挖掘的相关算法。


展开
目录
前言


第1章Python与数据分析

11概述

111引例

112数据分析与数据挖掘

12Python简介

121Python特点

122Python应用场合

13数据分析流程

131明确目标

132获取数据

133清洗数据

134特征工程

135构建模型

136模型评估

14数据分析库

141NumPy

142Matplotlib

143Pandas

144Seaborn

145Scipy

146Sklearn

15Python解释器

151Ubuntu下安装Python

152Windows下安装Python

16Python编辑器

161IDLE

162VScode

163PyCharm

164Anaconda

165Jupyter

17习题

第2章NumPy——数据分析基础
工具

21安装NumPy

22ndarray对象

221认识ndarray对象

222ndarray对象属性

23创建ndarray对象

231zeros

232ones

233diag

234arange

235linspace

236logspace

24数组变换

241维度变换

242数组拼接

243数组分割

244数组复制

25索引和切片

26线性代数

261矩阵运算

262矩阵转置

263特征根和特征向量

27统计量

271平均值

272最值

273中位数

274极差

275方差

276协方差

277皮尔森相关系数

28习题

第3章Matplotlib——数据可视化
工具

31安装Matplotlib

32绘图步骤

321创建画布

322绘图函数

323绘图属性

33子图基本操作

331pltsubplot

332figureadd_subplot

333pltsubplots

34绘图

341折线图

342气泡图

343饼图

344直方图

345条形图

35概率分布

351泊松分布

352正态分布

353均匀分布

354二项分布

36习题

第4章Pandas——数据处理工具

41认识Pandas

42Series

421创建Series

422 Series属性

423访问Series数据

43操作Series

431更新Series

432插入Series

433删除Series

44DataFrame

441创建DataFrame

442DataFrame属性

443选取行列数据

45操作DataFrame

451更新DataFrame

452插入DataFrame



453删除DataFrame

46Index

461创建Index

462常用属性

463常用方法

464重建Index

47可视化

471线形图

472条形图

473饼状图

474直方图与密度图

48数据转换

481数据值替换

482数据映射

483数据值合并

484数据值补充

485数据离散化

49数据分组与聚合

491数据分组

492数据聚合

410读取外部数据

4101操作Excel

4102操作文本文件

4103操作数据库

411习题

第5章Scipy——数据统计工具

51认识Scipy

52稀疏矩阵

53线性代数

531矩阵运算

532线性方程组求解

54数据优化

541非线性方程组求解

542函数最值

543最小二乘法

55数据分布

551泊松分布

552正态分布

553均匀分布

554二项分布

555指数分布

56统计量

561众数

562皮尔森相关系数

57图像处理

571旋转图像

572图像滤波

573边缘检测

58习题

第6章Seaborn——数据可视化
工具

61认识Seaborn

611绘图特色

612图表分类

613数据集

62绘图设置

621绘图元素

622主题

623调色板

63绘图

631直方图

632核密度图

633小提琴图

634分类散点图

635条形图

636热力图

637点图

64习题

第7章Sklearn——机器学习工具

71Sklearn简介

72安装Sklearn

73数据集

731小数据集

732大数据集

733生成数据集

74机器学习流程

741数据清洗

742划分数据集

743特征工程

744机器算法

745模型评估

75习题





第8章数据处理

81认识数据处理

82数据清洗

821处理缺失值

822处理异常值

823处理重复值

83特征处理

831规范化

832标准化

833鲁棒化

84数据分析可视库

841missingno库

842词云

85案例——学生信息清洗

86习题

第9章特征工程

91认识特征工程

92独热编码

93特征提取

931DictVectorizer

932CountVectorizer

933TfidfVectorizer

94中文分词

941Jieba分词库

942停用词表

95案例——中文特征提取

96习题

第10章评价指标

展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

温馨提示:请使用泸西县图书馆的读者帐号和密码进行登录

点击获取验证码
登录