第1章 概述
1.1 先进光学波前传感技术的应用需求
光学波前传感技术作为一门现代光学度量手段,主要根据不同探测原理 [1] 设计相应的光学系统,利用光电探测器件对相应接收面上的光强信息进行采样,进而复原光束的波前分布。光学波前传感技术的出现与波动光学的提出、发展密切相关。
17 世纪,荷兰物理学家惠更斯提出了光的波动理论,创立了波动说 [2]。其在《光论》一书中写道:“光同声一样,是以球形波面传播的。” 并指出光振动所达到的每一点都可视为次波的振动中心,次波的包络面为传播着的波的波阵面 (即波前)。但由于当时牛顿的光微粒说占据着绝对的主导地位 [3],光的波动理论及光波前等概念的相关研究并未得到关注。
直到 19 世纪初,托马斯 杨的双缝干涉实验确切地证实了光的波动性质,奥古斯丁 菲涅耳又以杨氏干涉补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,该理论圆满解释了光的干涉和衍射现象 [4]。随后麦克斯韦又在 19 世纪末叶提出了光的电磁理论 [5],这使得惠更斯的光波动学说再次得到承认。但该理论只对光的传播作出了满意的解释,难以说明光的发射和吸收过程,表现出了经典物理的困难。因此,光的波动说与粒子说的争论从未平息。到了 20世纪初,普朗克和爱因斯坦基于光电效应提出了光的量子学说 [6],“对于时间的平均值,光表现为波动;对于时间的瞬间值,光表现为粒子性”,即波粒二象性。这一科学理论*终得到了学术界的广泛接受。
随着三个多世纪的波动、粒子之争落下帷幕,光作为电磁波的一种已得到人们的认可,而波前 (相位) 作为光的重要属性之一也开始逐步进入研究人员的视野。1935 年,Frederick Zernike 基于光的相位差所引起的干涉现象提出了位相反衬法,有效改善了透明物体成像的反衬度 [7]。鉴于位相反衬法在生物学、医学、晶体学中的重要应用价值,Frederick Zernike 获得了 1953 年诺贝尔物理学奖。同年,为了解决天文观测中大气湍流带来的成像分辨率下降问题,Horace W. Babcock首次提出了自适应光学概念 [8],即通过实时探测、补偿波前畸变,以减小光学系统光瞳处的波前畸变,从而达到改善系统像质的目的。然而,由于当时缺乏有效的实时波前探测与调制手段,自适应光学概念并未得到快速发展。随着人们对光束波前认识的不断深入,波前信息的巨大研究价值及发展潜力日益凸显。在迫切应用需求的推动下,作为光束波前探测与感知的关键技术手段,光学波前传感技术迎来了其发展的黄金时期。
在随后的几十年里,波前整体倾斜传感技术、夏克-哈特曼 (Shack-Hartmann)光学波前传感技术、棱锥光学波前传感技术、多波前横向剪切干涉技术、曲率光学波前传感技术、全息光学波前传感技术、相位恢复与相位差异光学波前传感技术等各种各样的先进波前探测手段应运而生,并在天文观测、激光光束净化、医学成像、光通信等领域发挥着越来越关键的作用。
首先在天文观测领域,地基反射式望远镜的*高分辨率主要由主镜口径决定。为了追求更高的成像分辨率,望远镜的主镜口径由*初的几十毫米发展到如今的十几米甚至是几十米 [9]。随着口径的不断增大,受到自身温度均匀性、重力的影响,镜面的面型误差、镜体及其相关机械结构的姿态失调均会导致望远镜的成像质量变差;此外,大气湍流带来的像斑模糊和星点抖动问题,同样会降低望远镜的观测效果。因此,大口径望远镜系统往往需要主动光学技术以及自适应光学技术来进行修正,而精准的波前探测是实现主动光学、自适应光学补偿的前提条件。首套应用于天文观测的自适应光学系统 [10] (COME-ON) 便是基于夏克-哈特曼光学波前传感技术实现的,该系统安装在欧洲南方天文台 3.6m 望远镜上,在自适应光学技术补偿下实现了 2.2μm 波段的近衍射极限成像。图 1.1 给出了基于分块式镜面成像的 Keck 望远镜观测到的土卫六星云图像 [10,11]。通过对比可以看出,在主动光学系统、自适应光学系统的补偿下土卫六星云的图像质量得到了明显改善。
图 1.1 土卫六星云图像
在激光光束控制领域,介质非均匀性、热效应、系统加工与装调误差等因素均会引入波前畸变,从而导致输出激光的光束质量变差,影响其进一步应用。在诸如国家点火装置 (National Ignition Facility, NIF)[12.14]、神光装置 [15.17] 等强激光装置中,波前畸变不仅会对光学系统运行安全构成威胁,更是直接决定了远场焦斑的能量集中度。如图 1.2 所示,NIF 装置采用由夏克-哈特曼光学波前传感器和 39 单元大口径变形镜 (DM) 组成的自适应光学系统,校正了系统光路中的静态、动态波前畸变,使得 192 路脉冲激光精准聚焦在 600μm 的点目标上。随着激光技术的不断发展,越来越多的激光系统对光束波前畸变的控制和校正提出了严苛要求,而作为实现波前校正的基础和前提,高性能的光学波前传感技术一直以来都是激光光束净化领域的研究热点。
图 1.2 NIF 装置示意图及传感器组件实物图
光学波前传感技术在医疗领域也拥有着广泛的应用前景。通过眼底视网膜成像,可以发现多种人体病变信息。但人眼像差除了离焦、像散外,还包含其他 30 多种高阶像差 [18,19],降低了成像分辨力。传统的眼科测量技术无法克服这些高阶像差,而哈特曼探测器等光学波前传感技术可以用于人眼视网膜成像系统中,通过获取人眼像差并加以补偿,以得到更加清晰的眼底视网膜图像 [20]。此外,光学波前传感技术还可以获得更为精确的人眼像差分布 (图 1.3),从而对角膜屈光手术进行指导 [21]。
图 1.3 德国视明 (SCHWIND) 公司人眼像差分析仪
在图 1.4 所示的光通信方面,大气湍流对自由空间光通信影响很大,使得激光信号通过大气信道传输后产生波前畸变,进而使接收端光斑弥散,接收功率和能量集中度明显下降,导致误码率上升,甚至通信失败 [22,23]。夏克-哈特曼光学波前传感技术、棱锥光学波前传感技术等是实时探测由大气湍流所引起波前畸变的有效方法。在结合波前校正器件加以补偿后,可以提高自由空间光通信系统光纤耦合效率,提高链路稳定性,降低误码率,从而实现更高的通信速率。因此,适用于大气湍流探测的光学波前传感技术已经成为自由空间光通信领域的关键支撑技术之一。
图 1.4 美国国家航空航天局 (NASA) 月球激光通信演示系统
综上,目前先进光学波前传感技术已经被广泛应用于多种现代光学系统中,如地基高分辨成像望远镜、激光惯性核聚变、人眼视网膜成像、自由空间光通信等。随着研究的不断深入,复杂场景下精确、快速、灵敏的波前探测需求同样变得日益迫切。因此,具备高性能探测潜力的先进光学波前传感技术一直作为光学探测领域的研究热点而备受瞩目。
1.2 先进光学波前传感技术的基本概念
1.2.1 波前畸变概述及其表征方式
波阵面表示光波传输到某一位置处由等相位面所组成的曲面,而*前方的波阵面即为光波的波前,根据波前形状一般可以分为球面波、平面波等。标准球面波经理想光学系统后仍能聚焦于一点,使得物点可以在像平面上清晰成像,如图 1.5 所示。
然而实际的光学系统往往存在传输介质非均匀性、光学元件加工及装调误差等问题,当光束经过实际系统后,其波前将不再是标准形状的球面波,光束也无法在理想像点处聚焦,从而导致光学系统无法对点光源清晰成像,如图 1.6 所示,这种波前发生形变的情况我们称为波前畸变。
图 1.5 理想点光源成像
图 1.6 波前畸变
波前畸变通常等效为二维曲面,与二维函数相对应。因此,利用一组完备的二维正交基即可表征波前畸变。目前常用的波前展开多项式有 Legendre 多项式 [24],Zernike 多项式 [25] 等。其中 Zernike 多项式因具在单位圆内连续正交,且低阶像差物理意义明确等优点 [26.28],现已成为波前畸变表征方式中*为常用的模式分解基函数。
Zernike 多项式具有无穷级次,常采用极坐标 ρ 和 θ 形式以便描述圆域内的波前畸变。波前 φ(ρ, θ) 利用 N 阶 Zernike 多项式的线性加权组合即可表示如下:
(1-1)
式中,ai 是第 i 阶 Zernike 多项式的系数。
Zernike 多项式通常可以写成如下形式 [26]:
(1-2)
式中,m,n 分别为角向频率和径向频率。径向多项式 Rmn (ρ) 的表达式如下:
(1-3)
Zernike 多项式在单位圆上正交
(1-4)
式中,W(r) 单位圆内取值为 1/π,单位圆外取值为 0;δij 为 Kronecker 符号:
(1-5)
Zernike 多项式系数 ai 可以表示为
(1-6)
低阶 Zernike 多项式表达式及其对应的 Seidel 像差,如表 1.1 所示。图 1.7则给出了前 15 阶 Zernike 多项式对应的波前形状。
表 1.1 低阶Zernike多项式表达式及其对应的Seidel像素
展开