搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
出版时间 :
无库存
语义解析:自然语言生成SQL与知识图谱问答实战
0.00     定价 ¥ 99.00
泸西县图书馆
此书还可采购1本,持证读者免费借回家
  • ISBN:
    9787111736899
  • 作      者:
    易显维,宁星星
  • 出 版 社 :
    机械工业出版社
  • 出版日期:
    2023-12-01
收藏
荐购
编辑推荐

领域专家联袂推荐,语义解析大赛获奖者撰写,满足工业级应用安全、精准需求,弥合大模型的不足。

剖析语义解析技术原理与实践,涵盖机器翻译、模板填充、强化学习、GNN、中间表达五大技术方向,并随书提供案例代码。


展开
作者简介

易显维:硕士毕业于中国地质大学,曾任职中国建设银行、科大讯飞研究院、百分点认知智能实验室。10余年算法研发经验,在涉及机器学习技术的各个方向均有产品落地实践经验,并长期为武汉各企业的算法研发工作提供咨询与支持。主要研究方向为语义解析、机器视觉、组合导航,在国内外算法竞赛中累计获奖20余次。

宁星星:容联云AI研究院NLP算法专家,华南理工大学硕士。深耕NLP领域,从事语义解析、文本理解、文本校对、大模型(LLM)等方向的研究与应用。曾获CCKS(2020、2022)、百度千言(2022)、WAIC(2022)、CCF-BDCI(2021)、百度AI创新大赛(2021)、NLPCC(2020)等在内的多项Top3竞赛奖项,并参与研发容联云赤兔大模型。  

展开
目录

C O N T E N T S
目录序
前言
第1章NL2SQL和KBQA中的语义
解析技术1
11人机交互应用与语义解析
难点分析1
12主流的语义解析技术5
121NL2SQL任务及方法5
122KBQA任务及方法12
123语义解析技术方案对比17
13语义解析的预训练模型和
数据集19
131语义解析中的预训练模型19
132NL2SQL数据集19
133KBQA数据集21
14本章小结23第2章基于机器翻译的语义解析
技术24
21机器翻译原理浅析24
211常见机器翻译技术路线24
212神经网络机器翻译基本框架26
22NL2SQL翻译框架的构建27
221Seq2Seq模型原理27
222将Seq2Seq模型应用于
NL2SQL28
23从序列到集合:SQLNet
模型的解决方案28
231序列到集合29
232列名注意力29
233SQLNet模型预测及其训练
细节30
24T5预训练模型在NL2SQL中的
应用31
241T5模型简介31
242T5模型架构32
243T5模型训练方式32
244T5模型在NL2SQL中的
应用33
25NL2SQL的T5模型实践33
26本章小结43第3章基于模板填充的语义解析
技术44
31意图识别和槽位填充44
311意图识别和槽位填充的
步骤45
312如何进行意图识别和槽位
填充46
32基于X-SQL的模板定义与子
任务分解48
33本章小结49第4章基于强化学习的语义解析
技术50
41Seq2Seq中的强化学习
知识50
42SCST模型51
421SCST模型简介52
422SCST模型框架52
423SCST代码实现52
43MAPO模型62
431MAPO模型简介62
432MAPO代码实现63
44本章小结67第5章基于GNN的语义解析
技术68
51使用GNN对数据库模式进行
编码68
511匹配可能模式项的集合69
512GNN编码表示69
52关注模式的Global GNN71
521Global GNN的改进71
522Gating GCN模块详解72
523Re-ranking GCN模块详解75
53关注模式链接的RATSQL79
531Relation-Aware Self-Attention
模型80
532考虑更复杂的连接关系80
533模式链接的具体实现81
54关注模式链接拓扑结构的
LGESQL83
541LGESQL模型简介83
542LGESQL模型框架86
55本章小结87第6章基于中间表达的语义解析
技术88
61中间表达:IRNet88
62引入中间表达层SemQL90
63IRNet代码精析92
631模式链接代码实现92
632SemQL的生成95
633SQL语句的生成101
64本章小结107第7章面向无嵌套简单SQL查询的
原型系统构建108
71语义匹配解决思路108
72任务简介109
73任务解析110
731列名解析110
732输入整合111
733输出子任务解析111
734模型整体架构112
74代码示例113
741QueryTokenizer类的构造113
742SqlLabelEncoder类的
构造115
743生成批量数据115
744模型搭建117
745模型训练和预测118
75本章小结120第8章面向复杂嵌套SQL查询的
原型系统构建121
81复杂嵌套SQL查询的难点
剖析121
811复杂嵌套SQL语句121
812难点与对策分析122
82型模型解析123
821构建复杂SQL语句的中间
表达形式123
822型模型的搭建与训练124
83列模型解析127
831嵌套信息的编码设计127
832列模型的搭建与训练127
84值模型解析130
841值与列的关系解析130
842值模型的搭建与训练130
85完整系统演示132
851解码器132
852完整流程演示133
86本章小结134第9章面向SPARQL的原型系统
构建135
91T5、BART、UniLM模型
简介135
92T5、BART、UniLM方案136
93T5、BART、UniLM生成
SPARQL语句实现141
94T5、BART、UniLM模型结果
合并156
95路径排序160
96SPARQL语句修正和再次
排序172
97本章小结185第10章预训练优化186
101预训练技术的发展186
1011掩码语言建模187
1012去噪自动编码器189
102定制预训练模型:
TaBERT192
1021信息的联合表示192
1022预训练任务设计192
103TAPAS194
1031附加Embedding编码表
结构194
1032预训练任务设计195
104GRAPPA195
1041表格数据增强:解决数据
稀疏难题195
1042预训练任务设计195
105本章小结197第11章语义解析技术落地思考198
111研究与落地的差别198
112产品视角的考虑200
113潜在的落地场景200
114实践技巧201
1141数据增强在NLP领域的
应用201
1142数据增强策略202
1143方案创新点204
115本章小结205

展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

温馨提示:请使用泸西县图书馆的读者帐号和密码进行登录

点击获取验证码
登录