搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
出版时间 :
无库存
基于图论的机器学习方法
0.00     定价 ¥ 76.00
泸西县图书馆
此书还可采购1本,持证读者免费借回家
  • ISBN:
    9787118126228
  • 作      者:
    任维雅,黄魁华,程光权,范长俊
  • 出 版 社 :
    国防工业出版社
  • 出版日期:
    2023-01-01
收藏
目录
第1章 绪论
1.1 引言
1.2 国内外相关研究现状
1.2.1 基于图论的无监督学习
1.2.2 基于图论的半监督学习
1.2.3 基于图论的监督学习
1.2.4 图构建方法
1.2.5 基于图论的学习方法拓展
1.2.6 研究现状评述
1.3 本书的主要工作
1.3.1 针对的问题和研究思路
1.3.2 研究内容及贡献
1.4 本书的组织结构
第2章 基于图论的学习框架模型
2.1 引言
2.2 基于图论的学习与两种假设
2.2.1 流形假设
2.2.2 聚类假设
2.3 图的划分准则
2.3.1 2类划分
2.3.2 多类划分
2.4 基于图论的学习框架模型
2.4.1 问题描述与基本假设
2.4.2 约束条件放宽方法
2.4.3 模型分析
2.5 本章小结
第3章 基于图论的无监督学习
3.1 引言
3.2 基本问题描述与模型定义
3.2.1 基于图论的无监督学习问题描述
3.2.2 模型定义
3.3 基于图论的无监督学习算法框架
3.3.1 Logdet正则化
3.3.2 学习框架
3.4 基于图论的无监督学习算法
3.4.1 迭代法
3.4.2 算法收敛性
3.4.3 复杂度分析
3.5 与以往工作之间的区别和联系
3.5.1 核k均值,谱聚类和对称非负矩阵分解
3.5.2 解的非负性,维度和稀疏性
3.5.3 权重矩阵
3.6 实验结果与分析
3.6.1 实验说明
3.6.2 示例
3.6.3 真实数据集
3.6.4 聚类结果
3.6.5 算法分析
3.6.6 CAC的变形
3.7 本章小结
第4章 基于图论的半监督学习
4.1 引言
4.2 基本问题描述与模型定义
4.2.1 基于图论的半监督分类学习
4.2.2 基于图论的半监督聚类学习
4.3 基于图论的半监督学习算法
4.3.1 基于图论的半监督分类算法
4.3.2 基于图论的半监督聚类算法
4.4 与以往工作的区别和联系
4.4.1 LGC方法和GFHF方法
4.4.2 GGMC方法
4.5 实验结果与分析
4.5.1 实验说明
4.5.2 真实数据集
4.5.3 构建权重矩阵
4.5.4 半监督分类结果
4.5.5 半监督聚类结果
4.5.6 算法分析
4.6 本章小结
第5章 基于图论的监督学习
5.1 引言
5.2 基本问题描述与模型定义
5.2.1 基于图论的监督学习问题描述
5.2.2 模型定义
5.3 基本图论的监督学习算法
5.4 实验结果与分析
5.4.1 实验说明
5.4.2 真实数据集
5.4.3 分类结果
5.4.4 算法分析
5.4.5 稀疏约束拓展
5.5 本章小结
第6章 基于图论的协同正则化学习
6.1 引言
6.2 基本问题描述与模型定义
6.2.1 基于图论的无监督协同正则化学习问题描述
6.2.2 基于图论的半监督协同正则化学习问题描述
6.2.3 模型定义
6.3 基本图论的协同正则化学习算法
6.3.1 基于图论的协同正则化学习算法框架
6.3.2 基于图论的协同正则化学习算法
6.4 实验结果与分析
6.4.1 实验说明
6.4.2 数据集
6.4.3 聚类结果
6.4.4 算法分析
6.5 本章小结
第7章 基于图论的多重正则化学习
7.1 引言
7.2 基本问题描述与模型定义
7.2.1 基于图论的多重正则化学习问题描述
7.2.2 模型定义
7.3 基本图论的无监督多重正则化学习算法
7.3.1 基于图论的无监督多重正则化学习算法框架
7.3.2 基于图论的无监督多重正则化学习算法
7.3.3 算法收敛性
7.3.4 复杂度分析
7.4 基本图论的半监督多重正则化学习算法
7.4.1 基于图论的半监督多重正则化聚类学习算法
7.4.2 基于图论的半监督多重正则化分类学习算法
7.4.3 算法分析
7.5 与以往工作的区别和联系
7.6 实验结果与分析
7.6.1 实验说明
7.6.2 示例
7.6.3 真实数据集
7.6.4 实验结果
7.6.5 算法分析
7.6.6 模型变形
7.7 本章小结
第8章 基于图论的公共视频场景聚集性度量及分析
8.1 引言
8.2 公共视频中群体场景的聚集性度量和分析框架
8.2.1 聚集度主题
8.2.2 研究思路和框架
8.3 公共视频中群体场景的聚集性度量和场景划分
8.3.1 路径积分描述子
8.3.2 聚集度
8.3.3 自驱动粒子模型实验
8.3.4 场景划分方法
8.4 实验结果与分析
8.4.1 实验说明
8.4.2 数据集
8.4.3 实验结果
8.5 本章小结
参考文献
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

温馨提示:请使用泸西县图书馆的读者帐号和密码进行登录

点击获取验证码
登录