目 录
第 一部分 基础知识
第 1章 自然语言处理技术 2
1.1 自然语言处理概述 2
1.2 数据标注任务 3
1.2.1 数据标注之中文分词 3
1.2.2 数据标注之词性标注 4
1.3 词表示学习任务 5
1.3.1 词表示方法的类型 5
1.3.2 详解词的分布式表示 6
1.3.3 词嵌入 7
1.4 实体识别任务 9
1.5 关系抽取任务 10
1.6 事件抽取任务 12
1.7 预训练模型 14
1.8 小样本学习 16
1.9 领域自适应 18
1.10 多模态任务 20
1.11 对话任务 23
1.11.1 生成式对话 23
1.11.2 任务导向型对话 24
1.12 本书结构 26
参考文献 26
第 2章 从统计机器学习模型到神经网络模型 28
2.1 统计机器学习方法的三要素 28
2.2 隐马尔可夫模型 28
2.3 支持向量机 30
2.4 条件随机场 34
2.5 前馈神经网络 37
2.6 反馈神经网络 42
2.6.1 循环神经网络 42
2.6.2 递归神经网络 43
2.6.3 Hopfield神经网络 44
2.6.4 长短期记忆网络 45
2.7 注意力模型 47
2.7.1 注意力 47
2.7.2 Encoder-Decoder框架 47
2.7.3 软注意力 49
2.7.4 硬注意力 50
2.7.5 自注意力 51
2.8 Transformer模型 53
2.9 图神经网络模型 55
参考文献 57
第3章 词表示学习 59
3.1 分布假设与分布式表示 59
3.2 词向量模型CBOW 60
3.3 词向量模型Skip-Gram 61
参考文献 62
第二部分 知识抽取
第4章 实体识别 64
4.1 基于卷积神经网络的实体识别 64
4.2 基于循环神经网络的实体识别 67
4.3 基于Transformer的实体识别模型 70
参考文献 72
第5章 关系抽取 73
5.1 基于注意力的关系抽取模型 73
5.2 基于集成学习的关系抽取模型 76
5.3 基于预训练的关系抽取模型 78
5.4 基于Transformer的关系抽取模型 81
5.5 基于GCN的关系抽取模型 82
参考文献 84
第6章 领域自适应 86
6.1 DAN模型 86
6.2 DANN模型 87
6.3 DSN模型 90
参考文献 92
第7章 多模态任务 93
7.1 多模态数据 93
7.2 多模态融合技术 95
7.3 多模态融合技术面临的挑战 98
参考文献 99
第8章 小样本学习 100
8.1 数据增强 100
8.2 远程监督 102
8.3 元学习 103
参考文献 106
第9章 实体与关系联合抽取 107
9.1 参数共享模式 108
9.2 新标注策略模式 110
9.3 关系重叠问题 111
参考文献 112
第三部分 医疗电子病历研究与实践
第 10章 电子病历研究背景 114
10.1 电子病历概述 114
10.2 电子病历文本类型 115
10.3 电子病历实体分类体系 115
10.4 电子病历实体关系分类体系 116
10.5 电子病历隐私实体分类体系 117
10.6 ICD编码 118
10.7 电子病历ICD自动编码实践 119
10.8 电子病历实体识别实践 122
参考文献 131
第 11章 电子病历的事件抽取 132
11.1 电子病历中的事件 132
11.2 电子病历事件触发词识别 133
11.3 电子病历事件触发词抽取实践 134
11.3.1 文本预处理 134
11.3.2 引入依存句法特征的动态多池化模型 136
11.3.3 动态多池化卷积神经网络 138
11.3.4 实验结果分析 140
11.4 电子病历事件元素抽取 141
11.4.1 电子病历事件元素角色类别的定义 141
11.4.2 电子病历事件元素抽取实践 142
11.4.3 句子编码 142
11.4.4 混合句法特征的图神经网络 144
参考文献 146
第 12章 医疗对话摘要生成 147
12.1 基于情景记忆网络的编码标记模型 148
12.1.1 情景记忆网络 149
12.1.2 基于情景记忆网络的分层标记模型 150
12.1.3 实验 151
12.2 医疗对话摘要的未来 155
参考文献 155
第四部分 前沿技术与实践
第 13章 因果推断技术 158
13.1 电子病历中的因果关系 158
13.2 因果方法 158
13.2.1 因果推断 158
13.2.2 将因果关系发现与不同研究方向结合 160
13.2.3 将因果关系发现应用于不同领域 161
13.2.4 典型的因果推断技术 161
13.3 电子病历中的因果推断技术 165
参考文献 166
第 14章 小样本学习实体识别实践 167
14.1 问题定义 167
14.2 方法 169
14.2.1 原型网络 169
14.2.2 字符感知 170
14.2.3 句子感知 171
14.2.4 联合学习策略 172
14.3 实验 172
14.3.1 数据集 172
14.3.2 超参数设置 173
14.3.3 基线模型 173
14.3.4 整体实验结果 174
14.3.5 收敛速度验证 174
14.3.6 消融研究 176
14.3.7 整体实验结果 177
14.3.8 错误指标分析 179
参考文献 180
第 15章 小样本实体关系抽取实践 181
15.1 问题定义 182
15.2 方法 182
15.2.1 原型网络 183
15.2.2 特征级注意力 184
15.2.3 深度集成策略 185
15.2.4 微调策略 185
15.3 实验 186
15.3.1 数据集 186
15.3.2 超参数设置 186
15.3.3 基线模型 187
15.3.4 整体实验结果 187
15.3.5 交叉验证 189
15.3.6 消融研究 190
参考文献 192
展开