搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
出版时间 :
无库存
能源系统人工智能方法
0.00     定价 ¥ 69.00
泸西县图书馆
此书还可采购1本,持证读者免费借回家
  • ISBN:
    9787111737704
  • 作      者:
    赵阳,等
  • 出 版 社 :
    机械工业出版社
  • 出版日期:
    2023-12-01
收藏
畅销推荐
目录
目  录
前言
第1章 绪论 1
1.1 能源系统工程与人工智能 1
1.2 人工智能发展历程 2
1.3 本书的内容结构 3
思考与练习 4
第2章 数据预处理方法 5
2.1 能源系统中的数据 5
2.1.1 能源系统运行数据常见格式及
特点 5
2.1.2 能源系统运行数据的表现形式 6
2.1.3 数据预处理的必要性 6
2.2 能源系统运行数据清洗方法 7
2.2.1 常见的缺失值处理方法 7
2.2.2 常见的异常值识别方法 10
2.3 能源系统运行数据降维方法 13
2.3.1 样本维度的降维 14
2.3.2 变量维度的降维 14
2.4 能源系统运行数据规范化方法 15
2.5 能源系统运行数据转换方法 17
2.5.1 连续数值型-类别型变量转换
方法 17
2.5.2 类别型-连续数值型变量转换
方法 18
2.6 能源系统运行数据分割方法* 18
思考与练习 21
第3章 无监督学习方法 22
3.1 总论 22
3.1.1 能源领域无监督学习方法概述 22
3.1.2 典型能源应用场景 23
3.1.3 无监督学习的一般流程 24
3.2 基于聚类的无监督学习 24
3.2.1 引言 24
3.2.2 基本概念 25
3.2.3 基于原型的聚类 38
3.2.4 基于密度的聚类 42
3.2.5 基于层次的聚类 46
3.2.6 课外阅读 51
3.3 基于关联规则挖掘的无监督学习 51
3.3.1 引言 51
3.3.2 基本概念 51
3.3.3 Apriori算法 54
3.3.4 频繁模式增长算法 61
3.3.5 课外阅读 73
3.4 知识后挖掘 73
3.4.1 引言 73
3.4.2 聚类后挖掘 74
3.4.3 关联规则后挖掘 83
3.4.4 课外阅读 84
3.5 总结与展望 85
思考与练习 85
参考文献 86
第4章 监督学习方法 87
4.1 总论 87
4.1.1 监督学习基础概念 87
4.1.2 典型能源应用场景 88
4.1.3 基于监督学习的预测建模流程 91
4.2 特征工程 92
4.2.1 引言 92
4.2.2 特征筛选方法 92
4.2.3 特征构建方法 100
4.3 模型选择与优化 102
4.3.1 引言 102
4.3.2 模型选择 103
4.3.3 模型原理 106
4.3.4 模型优化 122
4.4 模型评价方法 132
4.4.1 引言 132
4.4.2 回归模型评价指标 132
4.4.3 分类模型评价指标 134
4.4.4 课外阅读 137
4.5 模型解读 138
4.5.1 引言 138
4.5.2 模型专用解读方法 139
4.5.3 模型通用解读方法 142
4.6 总结与展望 158
思考与练习 159
参考文献 159
第5章 优化方法 161
5.1 总论 161
5.1.1 能源领域优化方法概述 161
5.1.2 典型能源应用场景 162
5.1.3 优化方法的一般流程 162
5.2 能源系统评价指标 163
5.2.1 引言 163
5.2.2 能源效益指标 164
5.2.3 经济效益指标 166
5.2.4 环境效益指标 169
5.2.5 电网互动性指标 171
5.2.6 综合效益指标 173
5.2.7 课外阅读 174
5.3 能源系统建模方法 174
5.3.1 引言 174
5.3.2 建模方法 174
5.3.3 示例分析:综合能源系统建模 177
5.3.4 示例分析:建筑能源系统建模 179
5.3.5 课外阅读 184
5.4 能源系统优化方法 184
5.4.1 引言 184
5.4.2 优化问题 184
5.4.3 数学规划算法 186
5.4.4 启发式优化算法 200
5.4.5 多目标优化算法 207
5.4.6 课外阅读 216
5.5 总结与展望 216
思考与练习 217
参考文献 217
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

温馨提示:请使用泸西县图书馆的读者帐号和密码进行登录

点击获取验证码
登录