目 录Contents
编委会
序
前言
第1章 大数据的发展历程和时代背景//1
1.1 大数据发展的五大驱动力//2
1.2 大数据发展的历程及技术演进//4
1.2.1 采集解析技术//4
1.2.2存储管理技术//6
1.2.3并行计算技术//8
1.3大数据引起的时代变革//9
1.3.1 智能派单?路线优化//9
1.3.2 金融授信?风险防范//10
1.3.3 广告精准投放//10
1.3.4 挖掘用户的隐性需求//10
1.4 电信大数据的掘金之路//11
1.4.1 AT&T//12
1.4.2 德国电信//12
1.4.3 Vodafone//12
1.4.4 法国电信//12
1.4.5 中国联通//12
第2章 电信运营商的价值数据//14
2.1 电信运营商数据源概览//14
2.2 网络运行数据//17
2.2.1 基础资源及配置数据//17
2.2.2 信令追踪数据//21
2.2.3 业务识别数据//25
2.2.4 性能统计数据//34
2.2.5 监控预警数据//39
2.3 业务运营数据//43
2.3.1 用户基础资料//43
2.3.2 用户业务行为//44
2.3.3 用户辅助信息//46
第3章 电信大数据分析体系//50
3.1 用户画像及行为洞察//53
3.1.1 用户全息画像构建//53
3.1.2 用户实时轨迹追踪//61
3.1.3 用户行为偏好分析//70
3.2 业务识别及感知评判//80
3.2.1 业务特征捕获//80
3.2.2 用户业务感知评价//85
3.3 网络分析及全景描绘//93
3.3.1 网络资源分析//93
3.3.2 网络覆盖分析//96
3.3.3 网络性能分析//100
3.3.4 网络结构分析//104
3.4 终端解构及性能评价//105
34.1 终端分类构成解析//105
3.4.2 终端综合性能评价//112
3.5 运行匹配度解析//116
3.5.1 终端与网络匹配度//117
3.5.2 网络资源与业务匹配度//118
3.6 众筹竞争力分析//120
3.6.1 传统分析方法及局限性//120
3.6.2 基于智能终端App数据的分析方法//120
3.6.3 分析结果示例//122
第4章 电信大数据企业内部应用//125
4.1 大数据助力资源精准投放———网络规划建设//125
4.1.1 网络规划资源的精准投放//126
4.1.2 网络建设效果的有效评价//127
4.2 大数据助力效率提升———网络运维优化//129
4.2.1 智能化运维//129
4.2.2 精细化优化//133
4.3 特定用户群体的精准营销———市场推送//136
4.3.1 流量经营时代//137
4.3.2 现网中价值区域的挖掘//138
4.3.3 基于B+O大数据的流量经营策略//14.5
4.3.4 新型业务营销及发展趋势//156
4.4. 用户黏性及离网预判———客户维系//161
4.4.1 存量客户//163
4.4.2 现有用户的套餐升级//168
4.4.3 潜在异网客户//169
第5章 电信大数据外部行业应用//171
5.1 电信大数据在交通领域的应用//171
5.1.1 交通行业的发展需求//172
5.1.2 交通行业数据现状//175
5.1.3 电信运营商在交通领域的角色定位//177
5.1.4 电信大数据助力交通领域的应用案例//181
5.2 电信大数据在金融领域的应用//183
5.2.1 金融行业发展需求//183
5.2.2 金融行业数据现状//184
5.2.3 电信运营商在金融行业的角色定位//186
5.2.4 电信大数据助力金融的应用案例//188
5.3 电信大数据在城市规划领域的应用//193
5.3.1 城市规划发展需求//193
5.3.2 城市规划数据现状//193
5.3.3 电信运营商在城市规划的角色定位//194
5.3.4 电信大数据助力城市规划的应用案例//195
5.4 电信大数据在旅游领域的应用//198
5.4.1 旅游行业发展需求//198
5.4.2 旅游行业数据现状//199
5.4.3 电信运营商在旅游行业的角色定位//199
5.4.4 电信大数据助力旅游行业的应用案例//201
5.5 电信大数据在广告领域的应用//204
5.5.1 广告行业发展需求//204
5.5.2 广告行业数据现状//204
5.5.3 电信运营商在广告行业的角色定位//206
5.5.4 电信大数据助力广告精准投放的应用案例//207
5.6 电信大数据在公众及气象领域的应用//210
5.6.1 公众及气象领域发展需求//211
5.6.2 公众及气象领域数据现状//212
5.6.3 电信运营商在公众及气象领域的角色定位//213
5.6.4 电信大数据助力公众及气象领域的应用案例//214
5.7 电信大数据在餐饮?娱乐领域的应用//216
5.7.1 餐饮?娱乐行业发展需求//217
5.7.2 餐饮?娱乐行业数据现状//218
5.7.3 电信运营商在餐饮?娱乐行业的角色定位//219
5.7.4 电信大数据助力餐饮?娱乐行业的应用案例//220
5.8 电信大数据在其他领域的应用//223
5.8.1 商业决策//223
5.8.2 治安监控//225.
5.8.3 政府决策//226
5.8.4 医疗行业//228
5.8.5 教育行业//230
第6章 大数据的风险与挑战//232
6.1 风险管理//232
6.1.1 数据泡沫风险//232
6.1.2 技术升级风险//235
6.1.3 隐私侵权风险//240
6.2 挑战应对//244
6.2.1 技术发展挑战//244
6.2.2 思维转变挑战//246.
6.2.3 商业挑战//248
参考文献//251
温馨提示:请使用泸西县图书馆的读者帐号和密码进行登录
——深圳市大数据研究院副院长、IEEE院士 崔曙光
“运营商贯穿了数据从产生到应用的各个环节,并致力于成为整个大数据产业链的整合者和缔造者。通过打通各行业的数据孤岛,将各个领域的大数据连接汇聚起来,找到大数据与各行各业的契合点并形成合力,成为传统行业转型发展的利器。”
——中国联通网络技术研究院首席科学家 唐雄燕
“作为大数据的拥有者,运营商更应该承担其相应的责任,在确保客户信息安全的条件下,通过开放共享的方式,积极参与大数据生态体系的建立,通过创造大数据价值应用,有效地连接个人、企业和政府,让大数据真正服务于社会。”
——博识创智执行董事、总经理 刘红杰