译者序
审校者简介
前言
第1章 Keras安装 1
1.1 引言 1
1.2 在Ubuntu 16.04上安装Keras 1
1.2.1 准备工作 2
1.2.2 怎么做 2
1.3 在Docker镜像中使用Jupyter Notebook安装Keras 7
1.3.1 准备工作 7
1.3.2 怎么做 7
1.4 在已激活GPU的Ubuntu 16.04上安装Keras 9
1.4.1 准备工作 9
1.4.2 怎么做 10
第2章 Keras数据集和模型 13
2.1 引言 13
2.2 CIFAR-10数据集 13
2.3 CIFAR-100数据集 15
2.4 MNIST数据集 17
2.5 从CSV文件加载数据 18
2.6 Keras模型入门 19
2.6.1 模型的剖析 19
2.6.2 模型类型 19
2.7 序贯模型 20
2.8 共享层模型 27
2.8.1 共享输入层简介 27
2.8.2 怎么做 27
2.9 Keras函数API 29
2.9.1 怎么做 29
2.9.2 示例的输出 31
2.10 Keras函数API——链接层 31
2.11 使用Keras函数API进行图像分类 32
第3章 数据预处理、优化和可视化 36
3.1 图像数据特征标准化 36
3.1.1 准备工作 36
3.1.2 怎么做 37
3.2 序列填充 39
3.2.1 准备工作 39
3.2.2 怎么做 39
3.3 模型可视化 41
3.3.1 准备工作 41
3.3.2 怎么做 41
3.4 优化 43
3.5 示例通用代码 43
3.6 随机梯度下降优化法 44
3.6.1 准备工作 44
3.6.2 怎么做 44
3.7 Adam优化算法 47
3.7.1 准备工作 47
3.7.2 怎么做 47
3.8 AdaDelta优化算法 50
3.8.1 准备工作 51
3.8.2 怎么做 51
3.9 使用RMSProp进行优化 54
3.9.1 准备工作 54
3.9.2 怎么做 54
第4章 使用不同的Keras层实现分类 58
4.1 引言 58
4.2 乳腺癌分类 58
4.3 垃圾信息检测分类 66
第5章 卷积神经网络的实现 73
5.1 引言 73
5.2 宫颈癌分类 73
5.2.1 准备工作 74
5.2.2 怎么做 74
5.3 数字识别 84
5.3.1 准备工作 84
5.3.2 怎么做 85
第6章 生成式对抗网络 89
6.1 引言 89
6.2 基本的生成式对抗网络 90
6.2.1 准备工作 91
6.2.2 怎么做 91
6.3 边界搜索生成式对抗网络 98
6.3.1 准备工作 99
6.3.2 怎么做 100
6.4 深度卷积生成式对抗网络 106
6.4.1 准备工作 107
6.4.2 怎么做 108
第7章 递归神经网络 116
7.1 引言 116
7.2 用于时间序列数据的简单RNN 117
7.2.1 准备工作 118
7.2.2 怎么做 119
7.3 时间序列数据的LSTM网络 128
7.3.1 LSTM网络 128
7.3.2 LSTM记忆示例 129
7.3.3 准备工作 129
7.3.4 怎么做 129
7.4 使用LSTM进行时间序列预测 133
7.4.1 准备工作 134
7.4.2 怎么做 135
7.5 基于LSTM的等长输出序列到序列学习 143
7.5.1 准备工作 143
7.5.2 怎么做 144
第8章 使用Keras模型进行自然语言处理 150
8.1 引言 150
8.2 词嵌入 150
8.2.1 准备工作 151
8.2.2 怎么做 151
8.3 情感分析 157
8.3.1 准备工作 157
8.3.2 怎么做 159
8.3.3 完整代码清单 162
第9章 基于Keras模型的文本摘要 164
9.1 引言 164
9.2 评论的文本摘要 164
9.2.1 怎么做 165
9.2.2 参考资料 172
第10章 强化学习 173
10.1 引言 173
10.2 使用Keras进行《CartPole》游戏 174
10.3 使用竞争DQN算法进行《CartPole》游戏 181
10.3.1 准备工作 183
10.3.2 怎么做 187
温馨提示:请使用泸西县图书馆的读者帐号和密码进行登录