(1)作者阵容豪华,由阿里巴巴本地生活研究院算法团队技术专家领衔,海康威视、趣头条等企业的算法专家以及知名场景文本算法作者共同撰写;
(2)行业应用和学术理论相结合,既有来自于阿里巴巴本地生活实际应用场景的一线实践经验和方法,又有来自学术前沿的新理论;
(3)本书得到了阿里巴巴本地生活、达摩院、旷视科技、字节跳动、狗尾草等知名AI企业或机构的知名AI技术专家的联袂推荐;
(4)本书不仅讲解了OCR的组件、方法、算法、实现,而且还介绍了学术界最前沿的文字检测和文字识别方法。
这是一部融合了企业界先进工程实践经验和学术界前沿技术和思想的ORC著作。
本书由阿里巴巴本地生活研究院算法团队技术专家领衔,从组件、算法、实现、工程应用等维度系统讲解基于深度学习的OCR技术的原理和落地。书中一步步剖析了算法背后的数学原理,提供大量简洁的代码实现,帮助读者从零基础开始构建OCR算法。
全书共10章:
第1章从宏观角度介绍了ORC技术的发展历程、概念和产业应用;
第2章讲解了OCR的图像预处理方法;
第3~4章介绍了传统机器学习方法和深度学习的相关基础知识;
第5章讲解了基于传统方法和深度学习方法的OCR的数据生成;
第6章讲解了与OCR相关的一些高级深度学习方法,方便读者理解后续的检测和识别部分;
第7章讲解了文字的检测技术,从通用的目标检测到文字的检测,一步步加深读者对文字检测问题的认识;
第8章讨论了文字识别的相关技术,定位到文字的位置之后,需要对文字的内容进行进一步的解析;
第9章介绍了一些OCR后处理的方法;
第10章介绍了一些版面分析方法。
推荐序
前言
第1章 绪论 1
1.1 人工智能大潮中的OCR发展史 1
1.1.1 传统OCR方法一般流程 3
1.1.2 基于深度学习OCR方法一般流程 5
1.2 文字检测 6
1.3 文字识别 8
1.4 产业应用现状 10
1.5 本章小结 11
1.6 参考文献 11
第2章 图像预处理 13
2.1 二值化 13
2.1.1 全局阈值方法 13
2.1.2 局部阈值方法 17
2.1.3 基于深度学习的方法 20
2.1.4 其他方法 22
2.2 平滑去噪 26
2.2.1 空间滤波 26
2.2.2 小波阈值去噪 28
2.2.3 非局部方法 29
2.2.4 基于神经网络的方法 33
2.3 倾斜角检测和校正 35
2.3.1 霍夫变换 36
2.3.2 Radon 变换 38
2.3.3 基于 PCA 的方法 38
2.4 实战 39
2.5 参考文献 43
第3章 传统机器学习方法绪论 45
3.1 特征提取方法 45
3.1.1 基于结构形态的特征提取 45
3.1.2 基于几何分布的特征提取 61
3.2 分类方法模型 63
3.2.1 支持向量机 63
3.2.2 K近邻算法 65
3.2.3 多层感知器 70
3.3 实战:身份证号码的识别 71
3.3.1 核心代码 71
3.3.2 测试结果 78
3.4 本章小结 79
3.5 参考文献 79
第4章 深度学习基础知识 80
4.1 单层神经网络 80
4.1.1 神经元 80
4.1.2 感知机 81
4.2 双层神经网络 82
4.2.1 双层神经网络简介 82
4.2.2 常用的激活函数 83
4.2.3 反向传播算法 86
4.3 深度学习 87
4.3.1 卷积神经网络 88
4.3.2 常用优化算法 90
4.4 训练网络技巧 92
4.4.1 权值初始化 92
4.4.2 L1/L2正则化 93
4.4.3 Dropout 94
4.5 实战 95
4.6 参考文献 97
第5章 数据生成 99
5.1 背景介绍 99
5.2 传统单字OCR数据生成 100
5.3 基于深度学习的OCR数据生成 101
5.3.1 文字检测数据的生成 101
5.3.2 检测图片生成 103
5.3.3 其他方法 112
5.3.4 识别数据生成 113
5.4 通过GAN的技术生成数据 114
5.4.1 GAN背景介绍 114
5.4.2 GAN的原理 116
5.4.3 GAN的变种 117
5.5 图像增广 123
5.5.1 常用的图像增强方法 123
5.5.2 深度学习方法 126
5.6 常用的开源数据集 128
5.7 ICDAR的任务和数据集 131
5.8 本章小结 138
5.9 参考文献 138
第6章 深度学习高级方法 140
6.1 图像分类模型 140
6.1.1 LeNet5 140
6.1.2 AlexNet 142
6.1.3 VGGNet 143
6.1.4 GoogLeNet 144
6.1.5 ResNet 147
6.1.6 DenseNet 151
6.1.7 SENet 153
6.1.8 轻量化网络 154
6.2 循环神经网络 154
6.2.1 RNN网络 154
6.2.2 GRU 156
6.2.3 GRU的实现 158
6.2.4 LSTM网络 160
6.3 Seq2Seq 163
6.4 CTC Loss 164
6.4.1 算法详解 166
6.4.2 前向传播 168
6.4.3 后向传播 173
6.4.4 前向/后向算法 173
6.4.5 CTC算法特性 174
6.4.6 代码解析 175
6.5 Attention 178
6.6 本章小结 181
6.7 参考文献 182
第7章 文字检测 183
7.1 研究意义 183
7.2 目标检测方法 185
7.2.1 目标检测相关术语 186
7.2.2 传统检测方法 189
7.2.3 Two-stage 方法 195
7.2.4 One-stage 方法 210
7.3 文本检测方法 217
7.3.1 传统文本检测方法 217
7.3.2 基于深度学习的文本检测方法 222
7.4 本章小结 228
7.5 参考文献 228
第8章 字符识别 232
8.1 任务概览 232
8.2 数据集说明 233
8.2.1 数据集意义 233
8.2.2 常见识别数据集介绍 234
8.3 评测指标 238
8.3.1 编辑距离 239
8.3.2 归一化编辑距离 239
8.3.3 字符准确度 239
8.3.4 词准确率 239
8.3.5 语境相关的评测方式 239
8.4 主流算法介绍 240
8.4.1 传统光学方法 240
8.4.2 完全基于深度学习的方法 244
8.5 CRNN模型实战 274
8.5.1 简介 274
8.5.2 运行环境 274
8.5.3 测试部分讲解 274
8.5.4 测试运行结果 279
8.5.5 训练部分 279
8.5.6 用ICDAR2013数据集训练CRNN模型 282
8.6 本章小结 284
8.7 参考文献 285
第9章 OCR后处理方法 288
9.1 文本纠错 288
9.1.1 BK-tree 289
9.1.2 基于语言模型的中文纠错 293
9.2 文本结构化 297
9.2.1 模板匹配 298
9.2.2 文本分类 300
9.3 本章小结 304
9.4 参考文献 304
第10章 版面分析 306
10.1 版面分析详解 306
10.2 复杂版面识别 309
10.3 文档恢复 310
10.4 本章小结 311
10.5 参考文献 311
温馨提示:请使用泸西县图书馆的读者帐号和密码进行登录
本书系统介绍了OCR的各类方法,既包括图像预处理、数据生成与增强、文字检测与识别等基础内容,又有与神经网络和目标检测相结合的进阶内容。作者团队在学术研究和产业应用方面的经验都非常丰富。
——田值 FCOS/CTPN模型作者
随着深度学习的广泛应用,OCR技术历久弥新,最近几年取得了脱胎换骨的进展。阿里巴巴本地生活提供了各种线上线下融合的场景,催生了如菜单识别、小票识别、招牌识别、包装文字识别等富有生活味道的需求,对 OCR 技术提出了新的挑战。本书将OCR 的前沿理论与行业应用深度结合,能帮助读者更好地理解和掌握前沿的OCR 技术。
——李佩 阿里巴巴本地生活研究院高级总监
作为系统性讲解OCR的专业书籍,本书汇集了阿里本地生活研究院技术团队对深度学习领域OCR的理论研究和实践经验,可读性和实操性俱佳,是相关专业学生和从业者不可多得的一本工具书。
——魏秀参 旷视南京研究院院长
文字识别改变内容的表达和交互方式,是各行业信息化和数字化的基础,在多媒体内容理解、人工辅助驾驶、无障碍信息交流等方向都发挥着不可或缺的作用。本书讲解了文字识别技术的理论和方法,兼顾入门读者和进阶读者的需求。同时,书中分享了大量应用案例和实战经验,能帮助读者实现AI场景落地。
——王永攀 阿里达摩院读光OCR负责人
相较于图像信息,文字信息更加直接、易用。识别图像中的文字,是很多AI应用的非常关键的一步。本书不仅包括文字识别相关的理论和算法,还包括很多技术落地方面的实践和应用,帮助图像算法工程师少走弯路,快速学习。
——邵杰 字节跳动AI实验室资深研究员
图像识别是计算机视觉领域非常重要的研究方向,传统的机器学习方法主要关注图像内容的挖掘,如果能够识别出图像中的文字,对于图像的理解和后续的应用都有非常大的帮助。本书不仅讲解了机器学习和深度学习的基础知识,阐述了文字识别的相关理论和算法,更重要的是,还给出了技术实践和应用,可以帮助图像算法工程师快速学习和落地文字识别系统。
——邵浩 狗尾草人工智能研究院院长