·市面上难得一见的既蕴含底层模型的数学之美,又注重操作实践的生成对抗网络入门到精通的好书。
·企业一线开发工程师与应用型本科院校知名教师,双剑合璧,兼顾理论实战。
·学者网创始人汤庸教授、《深度学习之美》作者张玉宏、景略集智CEO王文凯倾力推荐。
1.容易入门:本书会讨论线性代数、微积分、概率论、信息论等内容,尽力只提及后面内容需要的数学知识,并从原理角度去讲解这块内容,为后面篇幅做好铺垫。
2.内容更深:介绍GAN 的各种变体时,除了介绍架构以外,还会讲解目标函数为何要这样设计,并从数学层面去推导证实,可以说本书比较重视不同类别GAN 架构的底层思想,并从数学上表示它。
3.涉及面广:囊括了GAN 的各个应用领域,包括传统GAN、DCGAN、CGAN、ColorGAN、CycleGAN、StarGAN、DTN、XGAN、WGAN、WGAN-GP、SN-GAN、StackGAN、StackGAN-v2、PGGGAN 等10 多个方向。
4.实战性强:提供了很多代码,并给出运行结果。考虑到篇幅原因,并没有将每个类别的所有代码都放上去,而是主要讲解生成器、判别器、损失定义、具体训练逻辑等主要内容。
展开