搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
出版时间 :
无库存
数据科学与分析:Python语言实现
0.00     定价 ¥ 69.00
泸西县图书馆
此书还可采购1本,持证读者免费借回家
  • ISBN:
    9787111623175
  • 作      者:
    [英],赫苏斯·罗格尔-萨拉查(Jesús,Rogel-Salazar)
  • 译      者:
    白皓 刘江一 上官明乔 刁娟译
  • 出 版 社 :
    机械工业出版社
  • 出版日期:
    2019-04-01
收藏
编辑推荐
本书专为在学术与商业领域从事数据科学和数据分析的人员而设计,旨在以Python为工具详细介绍数据科学和分析中使用的主要概念、技术、方法及一些实用技巧,为立志成为数据科学家的读者提供可行的实践指南。
本书各个章节彼此独立,以便读者可以轻松地查阅所需内容。 全书从处理过程和获取结果的角度讨论了数据科学和数学分析的相关内容, 还介绍了Python的重要功能,包括Python入门知识。本书涵盖机器学习、模式识别和人工智能的基本要素,它们是本书其余部分所使用的算法和实现的基础;还介绍了使用聚类技术和分类算法进行回归分析,探索了分层聚类、决策树、集合技术、降维技术和推荐系统;*后讨论了支持向量机算法以及回归和分类等应用程序中重要的核心技巧。
展开
作者简介
Jesús Rogel-Salazar 博士作为首席数据科学家,曾在AKQA、IBM数据科学工作室、Dow Jones等大型公司工作,在该领域有丰富的工作经验。 他是英国伦敦帝国理工学院物理系的访问研究员,也是英国赫特福德大学物理学、天文学和数学学院的成员。 他在帝国理工学院获得物理学博士学位,从事量子原子光学和超冷物质方面的研究。
自2006年以来,他一直担任数学高级讲师以及金融行业的顾问和数据科学家,是《Essential Matlaband Octave》一书的作者。 他的兴趣包括数学建模、数据科学以及光学、量子力学、数据新闻与金融等应用领域的优化问题。
展开
内容介绍
本书由前IBM首席数据科学家撰写,旨在为励志成为数据科学家的读者给出一个可行的实践指南。从Python入门开始,逐步实现数据分析、机器学习等通用算法,进而讨论数据科学家的典型工作流程,*后从实践入手,由浅入深,精选决策树、降维技术、支持向量机等数据分析案例,让读者能逐步理解晦涩的公式理论并上手操作,可以满足不同层次的读者需求。
展开
目录
译者序
前言
读者指南
第1章 数据科学家的试验与磨难 1
1.1 数据?科学?数据科学! 1
1.2 数据科学家:现代鹿角兔 4
1.3 数据科学工具 9
1.4 从数据到洞察力:数据科学工作流 11
1.4.1 识别问题 13
1.4.2 获取数据 13
1.4.3 数据挖掘 13
1.4.4 建模与评价 13
1.4.5 表征与互动 14
1.4.6 数据科学:一个迭代过程 14
1.5 总结 15
第2章 Python:完全不同的编程语言 16
2.1 为何是Python?为何不是? 17
2.1.1 使用Shell或不使用Shell 19
2.1.2 使用iPython/Jupyter Notebook 20
2.2 初探Python 21
2.2.1 基本类型 21
2.2.2 数字 21
2.2.3 字符串 22
2.2.4 复数 23
2.2.5 列表 24
2.2.6 元组 27
2.2.7 字典 29
2.3 控制流 31
2.3.1 if ... elif ... else 31
2.3.2 while 32
2.3.3 for 33
2.3.4 try... except 34
2.3.5 函数 36
2.3.6 脚本和模块 39
2.4 计算和数据处理 41
2.4.1 矩阵操作和线性代数 41
2.4.2 NumPy数组和矩阵 42
2.4.3 索引和切片 45
2.5 “熊猫”前来救驾 46
2.6 绘图和可视化库:Matplotlib 50
2.7 总结 52
第3章 能够探知的机器:机器学习和模式识别 53
3.1 认知模式 53
3.2 人工智能和机器学习 54
3.3 数据很好,但也需要其他支持 56
3.4 学习、预测和分类 57
3.5 机器学习和数据科学 58
3.6 特征选择 59
3.7 偏差、差异和正规化:平衡法 60
3.8 一些有用的措施:距离和相似性 61
3.9 注意“维度的诅咒” 64
3.10 Scikit-learn是我们的朋友 67
3.11 训练和测试 70
3.12 交叉验证 72
3.13 总结 75
第4章 关系难题:回归 76
4.1 变量之间的关系:回归 76
4.2 多元线性回归 78
4.3 普通最小二乘法 80
4.4 大脑与身体:单变量回归 83
4.5 对数变换 90
4.6 使任务更容易:标准化和扩展 93
4.6.1 正则化或单位缩放 94
4.6.2 z-Score缩放 95
4.7 多项式回归 96
4.8 方差–偏差权衡 99
4.9 收缩:选择运算符和Ridge 101
4.10 总结 105
第5章 鹿角兔和野兔:聚类 107
5.1 聚类 107
5.2 k–均值聚类 108
5.2.1 聚类验证 110
5.2.2 k–均值实际操作 112
5.3 总结 115
第6章 独角兽和马:分类 116
6.1 分类 116
6.1.1 混淆矩阵 117
6.1.2 ROC和AUC 119
6.2 使用KNN算法分类 121
6.3 逻辑回归分类器 126
6.3.1 逻辑回归的解释 129
6.3.2 逻辑回归的应用 130
6.4 使用朴素贝叶斯算法进行分类 136
6.4.1 朴素贝叶斯分类器 139
6.4.2 朴素贝叶斯分类的应用 140
6.5 总结 144
第7章 决策:分层聚类、决策树和集成技术 145
7.1 分层聚类 145
7.2 决策树 150
7.3 集成技术 160
7.3.1 套袋 164
7.3.2 助推 164
7.3.3 随机森林 165
7.3.4 层叠和混合 166
7.4 集成技术实践 167
7.5 总结 171
第8章 少即多:降维 172
8.1 降维 172
8.2 主成分分析 175
8.2.1 PCA实践 177
8.2.2 PCA在鸢尾花数据集中的应用 180
8.3 奇异值分解 183
8.4 推荐系统 187
8.4.1 基于内容的过滤实践 188
8.4.2 协同过滤实践 191
8.5 总结 195
第9章 内核秘诀:支持向量机 197
9.1 支持向量机和内核方法 197
9.1.1 支持向量机 199
9.1.2 内核的技巧 204
9.1.3 SVM实践:回归 205
9.1.4 SVM实践:分类 208
9.2 总结 212
附录 Scikit-learn中的管道 213
参考文献 217
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

温馨提示:请使用泸西县图书馆的读者帐号和密码进行登录

点击获取验证码
登录