1.在讲解算法的原理和用 scikit-learn 库封装好的方法实现算法之前,先通过几个例子,教会你具体的计算方法,让你手动实现算法;
2.书中代码比较连贯,可直接粘贴到Jupyter Notebook中运行,这一点对初学者非常有帮助;
3.书中示例浅显易懂,涵盖多种应用场景:新闻话题分类、垃圾邮件过滤、在线广告点击率预测和股票价格预测等,讲解方式生动有趣;
4.提供源代码。
本书开篇介绍Python语言和机器学习开发环境的搭建方法。后续章节介绍相关的重要概念,比如数据分析、数据预处理、特征抽取、数据可视化、聚类、分类、回归和模型性能度量等。本书包含多个项目案例,涉及几种重要且有趣的机器学习算法,引导读者从头实现自己的模型。学完本书,你将了解机器学习生态系统的全貌,并掌握机器学习技术的实践和应用。
在本书的帮助下,你将学会用强大却很简单的Python语言来处理数据科学难题,并构建自己的解决方案。
本书包括以下内容:
·利用Python语言抽取数据、处理数据和探索数据;
·用Python对多维数据进行可视化,并抽取有用特征;
·深入钻研数据分析技术,正确预测发展趋势;
·用Python从头实现机器学习分类算法和回归算法;
·用雅虎财经数据来分析和预测股价;
·评估并优化机器学习模型的性能;
·用机器学习和Python解决实际问题。
展开