本书是Springer“数学研究生教材”第120卷(GTM120)。
索伯列夫函数和有界变差函数均具有弱收敛甚至不连续性质。这类函数在逼近理论、变分学、微分方程、非线性位势理论等诸领域占有很重要的地位。
本书的讨论是建立在实分析的框架上,重点放在以实变函数方法为手段的实序空间的分析,讨论了上述两函数的点态特征。全书论述清晰、易于入门,是该方面较好的研究生教材。
◎读者对象
数学分析专业的研究生和科研人员。
预备知识;
索伯列夫空间及其基本性质;
索伯列夫函数的点态特征;
庞加莱不等性──一个统一的方法;有界变差函数。
温馨提示:请使用深圳南山图书馆的读者帐号和密码进行登录
请使用强密码进行登录