搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
出版时间 :
太阳能-风能互补发电技术及应用/新能源与建筑一体化技术丛书
0.00     定价 ¥ 35.00
宁波大学园区图书馆
此书还可采购5本,持证读者免费借回家
  • ISBN:
    9787112173280
  • 作      者:
    杨洪兴//吕琳//马涛
  • 出 版 社 :
    中国建筑工业出版社
  • 出版日期:
    2015-01-01
收藏
作者简介
  杨洪兴,1982年毕业于天津大学暖通空调专业,获得学士学位,于1989年开始在英国威尔士大学卡迪夫学院学习,1993年获得博士学位,并做了两年的博士后研究。从1995年开始,受聘于香港理工大学屋宇设备工程学系进行教学与科研工作,主要研究领域包括建筑节能和可再生能源利用的研究。现为可再生能源研究室主任,已发表了100多篇各种杂志和会议论文,在建筑节能和太阳能利用方面具有丰富的经验和建树。
展开
内容介绍
  《新能源与建筑一体化技术丛书:太阳能-风能互补发电技术及应用》主要总结了作者近些年在太阳能一风能互补系统方面的理论研究和实际工程经验。重点介绍了太阳能光伏与风力发电技术及其应用范围、独立离网型系统、储能技术和大型并网系统,并通过工程实例阐述了太阳能—风能互补系统的设计方法及运行情况。《新能源与建筑一体化技术丛书:太阳能-风能互补发电技术及应用》能够让读者了解国内外最新的有关风光互补技术的发展情况,掌握设计风光互补发电系统工程的设计方法。此外,《新能源与建筑一体化技术丛书:太阳能-风能互补发电技术及应用》也能够给从事相关行业的研究人员和工程人员提供一定的参考。《新能源与建筑一体化技术丛书:太阳能-风能互补发电技术及应用》由香港理工大学杨洪兴教授、吕琳副教授和马涛博士合作编著。
展开
精彩书摘
  《新能源与建筑一体化技术丛书:太阳能-风能互补发电技术及应用》:
  美国热发电计划与Cummins公司合作,从1991年开始开发商用的7kW碟式/斯特林发电系统,5年投入经费1800万美元。1996年,Cummins向电力部门和工业用户交付7台碟式发电系统,计划1997年生产25台以上。Cummins预计10年后年生产超过1000台。该种系统适用于边远地区独立电站。美国热发电计划还同时开发25kW的碟式发电系统。25kw是经济规模,因此成本更加低廉,而且适用于更大规模的离网和并网应用。
  1996年在电力部门进行实验,1997年开始运行。
  2.2.3.4菲涅尔式发电系统
  菲涅尔式太阳能热发电系统的工作原理类似槽式光热发电,只是采用菲涅耳结构的聚光镜来替代抛面镜。这使得它的成本相对来说低廉,但效率也相应降低。此类系统由于聚光倍数只有数十倍,因此加热的水蒸气质量不高,使整个系统的年发电效率仅能达到10%左右;但由于系统结构简单、直接使用导热介质产生蒸汽等特点,其建设和维护成本也相对较低。
  2.3太阳能发电技术
  太阳能发电分为光热发电和光伏发电。通常说的太阳能发电指的是太阳能光伏发电,简称“光电”。光伏发电是利用半导体界面的光电效应(Photoelectric Effect)而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串并联后进行封装保护,可形成大面积的太阳能电池组件,再配合上功率控制器等部件就形成了光伏发电装置。
  理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和薄膜电池等。其中,单晶硅和多晶硅电池用量最大,非晶硅电池过去主要用于一些小系统和计算器辅助电源等,目前也开始大规模商业化。通常,光伏发电产品主要用于三大方面:一是为无电场合提供电源;二是太阳能日用电子产品,如各类太阳能充电器、太阳能路灯和太阳能草地各种灯具等;三是并网发电,这在发达国家已经大面积推广实施。
  2.3.1太阳能电池
  太阳能电池是利用光电转换原理使太阳的辐射光通过半导体物质转变为电能的一种器件。这种光电转换过程通常叫做“光电效应”,常规太阳能晶硅电池装置如图2—10所示。
  ……
展开
目录
第1章 太阳能-风能互补发电技术的背景和概念
1.1 风光互补发电系统——新能源利用的“风光”之路
1.1.1 太阳能和风能的特点
1.1.2 风光互补系统的提出及发展
1.2 风光互补发电系统技术导论
1.2.1 风光互补发电系统概述
1.2.2 风光互补发电系统的现实意义及其优势
1.2.3 利用风光互补发电系统的合理性
1.3 我国风光互补发电系统的背景及发展
1.3.1 多重因素推动风光互补技术的发展
1.3.2 近年来我国风光互补市场快速稳定发展
1.3.3 我国风光互补发电系统的发展
本章参考文献

第2章 太阳能和光伏发电技术
2.1 太阳能资源
2.1.1 太阳能资源分布
2.1.2 太阳能资源计算
2.1.3 太阳能资源的评估
2.2 太阳能光热利用
2.2.1 太阳能热水器
2.2.2 太阳能海水淡化技术
2.2.3 太阳能光热发电
2.3 太阳能发电技术
2.3.1 太阳能电池
2.3.2 太阳能电池的组成与分类
2.3.3 太阳能电池组件
2.3.4 太阳能光伏发电系统
2.4 太阳能光伏发电的现状与前景
本章参考文献

第3章 风能和风力发电技术
3.1 风力资源
3.1.1 风的形成
3.1.2 风的种类
3.1.3 风速的概率分布
3.1.4 风力等级
3.1.5 风的变化
3.1.6 风能的计算
3.1.7 风能的优点和局限性
3.2 风资源评估方法
3.2.1 风资源评估综述
3.2.2 风资源评估指导原则
3.2.3 测风数据要求
3.2.4 测风数据处理
3.2.5 我国风能资源
3.3 风力发电技术
3.3.1 风力发电技术的划分
3.3.2 风力发电的优势
3.3.3 风力发电机的构成
3.3.4 几种典型的风力发电系统及其特性
3.4 国内外风力发电市场的发展情况探讨与展望
3.4.1 世界风电发展概况
3.4.2 国外风力发电现状和市场前景
3.4.3 国内风力发电现状和前景
本章参考文献

第4章 太阳能与风能的互补性和典型气象年的选择
4.1 资源互补性的案例研究
4.1.1 案例1:赤峰地区风能、太阳能资源分布
4.1.2 案例2:辽宁风能、太阳能资源分布
4.1.3 案例3:香港特区风能、太阳能资源分布
4.2 太阳能和风能相关性系数
4.2.1 相关性系数计算方法
4.2.2 案例1:伊朗Mahshahr地区
4.2.3 案例2:我国香港晨曦岛
4.3 典型气象年的选择
4.3.1 适用于风光互补发电系统的典型气象年
4.3.2 案例分析及与其他典型气象年的比较
4.4 小结
本章参考文献

第5章 太阳能-风能互补发电技术、系统配置及其优化
5.1 风光互补发电技术和系统
5.2 风光互补发电系统的数学模型与运行特性
5.2.1 离网型风光互补发电系统结构
5.2.2 光伏发电的数学模型
5.2.3 风力发电系统的数学模型
5.2.4 蓄电池充放电的数学模型
5.3 风光互补发电系统优化设计
5.3.1 基于LPSP的系统可靠性模型
5.3.2 基于ACS的系统经济性模型
5.3.3 基于遗传算法的优化模型
5.4 基于遗传算法的风光互补系统优化设计案例分析
5.4.1 系统介绍
5.4.2 现场测量数据对模拟模型的验证
5.4.3 混合系统的综合性能分析
5.5 小结
本章参考文献

第6章 太阳能-风能互补发电中的储能技术
6.1 储能技术概述
6.1.1 储能系统的作用
6.1.2 离网型风光互补系统中储能技术的重要性
6.1.3 国内外储能技术的现状与发展
6.2 储能技术的分类与特征
6.2.1 化学储能
6.2.2 物理储能
6.2.3 电磁储能
6.2.4 主要储能技术的比较
6.3 混合储能系统
6.3.1 蓄电池和超级电容混合储能
6.3.2 混合储能典型案例研究
6.4 储能技术的应用研究
6.4.1 储能系统的优化配置
6.4.2 储能系统的运行策略
6.4.3 储能系统的控制策略
6.5 储能系统中存在的问题及展望
本章参考文献

第7章 太阳能-风能互补发电中的并网技术
7.1 风光互补发电系统并网技术
7.1.1 逆变器
7.1.2 监控器
7.1.3 通讯系统
7.2 风光互补型电网规划设计典型方案
7.2.1 小型风光互补并网系统设计
7.2.2 大型风光互补并网系统规划设计
7.3 并网型风光互补发电系统存在的问题及展望
7.3.1 可调度型风光互补并网发电系统
7.3.2 不可调度型风光互补并网发电系统
7.3.3 风光互补电站并网发展的建议
本章参考文献

第8章 太阳能-风能互补发电系统的设计与应用实例
8.1 风光互补发电系统设计的基本原则
8.2 设计实例简析
8.2.1 离网型风光互补通信基站设计实例
8.2.2 风光互补LED路灯设计实例
8.3 商业软件设计实例
8.3.1 HOMER软件介绍
8.3.2 系统简述
8.3.3 系统负荷和可再生资源
8.3.4 系统组件信息
8.3.5 模拟结果分析
8.4 风光互补发电系技术的应用实例
8.4.1 风光互补发电系统实际案例介绍
8.4.2 数据采集系统
8.4.3 系统运行结果与分析
8.4.4 小结
本章参考文献

第9章 太阳能-风能互补发电技术的经济环境效益和市场前景分析
9.1 风光互补发电系统的能源、经济及社会环保效益
9.1.1 能源效益
9.1.2 经济效益
9.1.3 社会及环保效益
9.2 风光互补技术中存在的难度、问题及解决方法
9.2.1 蓄电池的寿命问题
9.2.2 经济因素
9.2.3 系统的管理和控制问题
9.2.4 能源输出的不稳定性问题
9.2.5 小型风力发电机的可靠性问题
9.3 风光互补发电系统应用前景
9.3.1 满足缺电农村的用电
9.3.2 室外LED照明
9.3.3 监控摄像机电源中的应用
9.3.4 船标应用
9.3.5 抽水蓄能电站
9.3.6 通信基站
9.4 小结
本章参考文献
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

温馨提示:请使用宁波大学园区图书馆的读者帐号和密码进行登录

点击获取验证码
登录