要使普通小二乘法产生优线性无偏估计,必须符合经典回归假设。其中一个较难实现的假设是,因变量是连续的。如果因变量是离散的,似然技术(如logit或probit)通常更有效。
《logit与probit:次序模型和多类别模型》致力于分析因变量具多类别时的估计情况,关注离散和次序形式的因变量,并把处理对象扩展到具有两个以上结果的多类别或非次序因变量。另外,作者提供了十分有用的计算机程序详情。
总体而言,《logit与probit:次序模型和多类别模型》为估计和解释从更复杂的离散因变量模型中得到的结果提供了实用指南。
展开