举例来说,如果某颗行星在远日点时距离太阳为10个单位(无论何种单位),而当它到达近日点从而与太阳相冲时,距离太阳为9个单位,那么从太阳上看去,它在远日点的视行程与它在近日点的视行程之比必定为81:100。
但上述论证要想成立,必须满足如下条件:首先,偏心弧不大,从而其距离变化也不大,也就是说从拱点到弧段终点的距离改变甚微;其次,偏心率不太大,因为根据欧几里得《光学》(Optics)的定理8,偏心率越大(即弧越大),其视运动角度的增加较之其本身朝着太阳的移动也越大。不过,正如我在我的《光学》第11章中所指出的,如果弧很小,那么即使移动很大的距离,也不会引起角度明显的变化。然而,我之所以提出这些条件,还有另外的原因。从日心观测时,偏心圆上位于平近点角附近的弧是倾斜的,这一倾斜减少了该弧视象的大小,而另一方面,位于拱点附近的弧却正对着视线方向。因此当偏心率很大时,似乎只有对于平均距离,运动才显得同本来一样大小,倘若我们不经减小就把平均周日运动用到平均距离上,那么各运动之间的关系显然就会遭到破坏,这一点将在后面水星的情形中表现出来。所有这些内容,在《哥白尼天文学概要》第五卷中都有相当多的论述,但仍有必要在此加以说明,因为这些论题所触及的正是天体和谐原理本身。
第七,倘若有人思考地球而非太阳上的观察者所看到的周日运动(《哥白,尼天文学概要》的第六卷讨论了这些内容),他就应当知道,这一问题尚未在目前的探讨中涉及。显然,这既是毋须考虑的,因为地球不是行星运动的来源;同时也是无法考虑的,因为这些相对于虚假视象的运动,不仅会表现为静止或留,而且还会表现为逆行。于是,如此种种不可胜数的关系就同时被平等地归于所有的行星。
……
展开