粒计算是当前计算智能研究领域模拟人类思维和解决复杂问题的新方法,其研究内容覆盖有关粒度的主要理论、方法和技术,是研究复杂问题求解、大数据挖掘和模糊不确定信息处理等关键问题的有效工具。《多粒度计算与三支决策》介绍粗糙集理论、概念格理论、三支决策理论等粒计算研究的概述和新进展,由相关领域的专家共同撰写而成。《多粒度计算与三支决策》共14章,主要由多粒度计算和三支决策两部分组成,具体包括多粒度智能决策,局部多粒度粗糙集,多属性群决策的犹豫模糊多粒度建模,稳健模糊粗糙集,广义多粒度标记决策系统的粒度标记组合与知识表示,多源信息融合与概念学习的粒计算方法,动态多粒度标记决策系统的较优粒度选择’三支聚类分析,基于七量化效用三支决策的属性约简,序贯三支决策理论框架,三支概念分析及其粒度,三支决策 推荐系统,面向能耗优化的自适应三支阈值确定方法,三支计算、认识计算与粒计算。
展开