(1)作者背景深厚:两位作者是AI和计算机视觉方面的专家,在阿里、腾讯、百度等企业有超过10年的相关工作经验;
(2)内容结构讲究:针对初学者需求精心安排,从预备知识、深度学习基础,到目标检测算法和工程案例,由浅入深,理论与实践结合;
(3)内容通俗易懂:语言通俗,逻辑性强;尽量绕开复杂的数学公式推导,无需数学基础,降低读者的阅读门槛;
(4)丰富实战案例:内容遵循知识点背景介绍→原理讲解→案例分析的思路,提供大量案例;
(5)提供源码下载:第2~11章均提供源数据和完整代码,代码均经过严格测试。
【配套源码】获取方式:
1、微信关注“华章计算机”
2、在后台回复关键词:目标检测
前言
第1章 目标检测概述 1
1.1 什么是目标检测 1
1.2 典型的应用场景 2
1.2.1 人脸识别 2
1.2.2 智慧交通 2
1.2.3 工业检测 3
1.3 目标检测技术发展简史 3
1.3.1 传统算法 4
1.3.2 深度学习算法 5
1.4 目标检测领域重要的公开评测集 8
1.5 本章小结 11
第2章 目标检测前置技术 12
2.1 深度学习框架 12
2.1.1 Theano 12
2.1.2 TensorFlow 13
2.1.3 MXNet 14
2.1.4 Keras 15
2.1.5 PyTorch 15
2.1.6 Caffe 16
2.2 搭建开发环境 17
2.2.1 Anaconda 17
2.2.2 Conda 19
2.2.3 PyTorch的下载与安装 21
2.3 NumPy使用详解 22
2.3.1 创建数组 22
2.3.2 创建NumPy数组 24
2.3.3 获取NumPy属性 27
2.3.4 NumPy数组索引 28
2.3.5 切片 28
2.3.6 NumPy中的矩阵运算 29
2.3.7 数据类型转换 31
2.3.8 NumPy的统计计算方法 31
2.3.9 NumPy中的arg运算 32
2.3.10 FancyIndexing 33
2.3.11 NumPy数组比较 33
2.4 本章小结 35
第3章 卷积神经网络 36
3.1 卷积神经网络基础 36
3.1.1 全连接层 36
3.1.2 卷积层 37
3.1.3 池化层 42
3.1.4 三维数据的卷积运算 44
3.1.5 批规范化层 45
3.1.6 Dropout层 47
3.2 本章小结 48
第4章 数据预处理 49
4.1 数据增强 49
4.1.1 resize操作 50
4.1.2 crop操作 51
4.1.3 随机的水平和竖直翻转 52
4.1.4 随机角度的旋转 53
4.1.5 亮度、对比度和颜色的随机变化 54
4.1.6 彩色图转灰度图 55
4.2 数据的探索—Kaggle猫狗大战 56
4.3 本章小结 64
第5章 常见卷积神经网络结构 65
5.1 LeNet神经网络 65
5.2 AlexNet神经网络 70
5.3 VGGNet神经网络 77
5.4 GoogLeNet神经网络 81
5.4.1 inception模块 83
5.4.2 GoogLeNet的实现 85
5.4.3 GoogLeNet的演变 88
5.5 ResNet 89
5.5.1 残差模块 90
5.5.2 ResNet模型 92
5.6 DenseNet 92
5.7 其他网络结构 95
5.8 实战案例 96
5.9 计算图像数据集的RGB均值和方差 98
5.10 本章小结 99
第6章 mmdetection工具包介绍 100
6.1 mmdetection概要 100
6.2 mmdetection支持的检测框架和算法实现 101
6.3 搭建mmdetection开发环境 102
6.4 使用入门 103
6.4.1 使用预训练模型进行推理 103
6.4.2 训练模型 105
6.4.3 有用的工具 106
6.4.4 如何使用mmdetection 108
6.5 标注图像 110
6.6 实战案例 112
6.6.1 检测人体 113
6.6.2 检测猫和狗 115
6.7 本章小结 120
第7章 目标检测的基本概念 121
7.1 概念详解 121
7.1.1 IoU计算 122
7.1.2 NMS操作 122
7.1.3 感受野 124
7.1.4 空洞卷积 128
7.1.5 评价指标mAP 129
7.2 本章小结 131
第8章 两阶段检测方法 132
8.1 R-CNN算法 132
8.1.1 生成候选区域 132
8.1.2 类别判定 133
8.1.3 位置修正 136
8.1.4 检测过程 137
8.1.5 R-CNN算法的重要意义 138
8.2 SPP-Net算法 139
8.2.1 空间金字塔采样 139
8.2.2 网络训练 141
8.2.3 测试过程 142
8.3 Fast R-CNN算法及训练过程 143
8.3.1 ROI池化层 144
8.3.2 模型训练 144
8.3.3 测试过程 147
8.4 Faster R-CNN算法及训练过程 147
8.4.1 候选框提取网络 148
8.4.2 RPN和Fast R-CNN共享特征的方法 152
8.5 Faster R-CNN代码解析 153
8.5.1 代码整体结构 153
8.5.2 数据加载 158
8.5.3 构建主干网络 160
8.5.4 候选框提取网络 161
8.5.5 对候选框进行分类和位置校正 163
8.5.6 算法模型架构图 165
8.6 本章小结 165
第9章 检测算法的进一步改进 167
9.1 特征金字塔 167
9.1.1 特征金字塔结构 167
9.1.2 FPN代码解析 170
9.2 焦点损失函数 174
9.3 本章小结 175
第10章 一阶段检测算法 176
10.1 YOLO算法 176
10.1.1 YOLO第一版 176
10.1.2 YOLO第二版 182
10.1.3 YOLO第三版 185
10.2 SSD算法 196
10.2.1 SSD算法原理 197
10.2.2 训练方法 197
10.2.3 SSD代码解析 201
10.3 FCOS算法 208
10.3.1 FCOS算法原理 208
10.3.2 FCOS源码解析 213
10.4 本章小结 217
第11章 工业AI的发展 218
11.1 工业AI的概念和互联网 218
11.2 工业AI落地应用 219
11.2.1 工业AI的典型场景 220
11.2.2 工业AI落地背后的本质 221
11.2.3 展望 221
11.3 工业生产
温馨提示:请使用广州市白云区图书馆的读者帐号和密码进行登录