工业界和学术界专家联袂推荐,一线开发专家与金牌讲师撰写,一站式解决OpenCV工程化开发痛点
以工业级视觉应用开发所需知识点为主线,讲透OpenCV相关核心模块,案例化详解1000个常用函数、深度学习知识以及模型的推理与加速
目 录
前言
基础篇
第1章 OpenCV简介与安装 / 2
1.1 OpenCV简介 / 2
1.1.1 OpenCV历史 / 2
1.1.2 OpenCV的模块与功能 / 3
1.1.3 OpenCV4里程碑 / 4
1.1.4 OpenCV发展现状与
应用趋势 / 4
1.2 OpenCV源码项目 / 4
1.3 OpenCV4开发环境搭建 / 5
1.4 第一个OpenCV开发程序 / 6
1.5 图像加载与保存 / 7
1.5.1 加载图像 / 7
1.5.2 保存图像 / 8
1.6 加载视频 / 9
1.7 小结 / 12
第2章 Mat与像素操作 / 13
2.1 Mat对象 / 13
2.1.1 什么是Mat对象 / 13
2.1.2 一切图像皆Mat / 14
2.1.3 Mat类型与深度 / 15
2.1.4 创建Mat / 15
2.2 访问像素 / 18
2.2.1 遍历Mat中的像素 / 18
2.2.2 像素算术运算 / 20
2.2.3 位运算 / 21
2.2.4 调整图像亮度与对比度 / 22
2.3 图像类型与通道 / 23
2.3.1 图像类型 / 23
2.3.2 图像通道 / 23
2.3.3 通道操作 / 24
2.4 小结 / 25
第3章 色彩空间 / 26
3.1 RGB色彩空间 / 26
3.2 HSV色彩空间 / 28
3.3 LAB色彩空间 / 29
3.4 色彩空间的转换与应用 / 30
3.5 小结 / 31
第4章 图像直方图 / 32
4.1 像素统计信息 / 32
4.2 直方图的计算与绘制 / 34
4.2.1 直方图计算 / 35
4.2.2 直方图绘制 / 36
4.3 直方图均衡化 / 37
4.4 直方图比较 / 40
4.5 直方图反向投影 / 41
4.6 小结 / 43
进阶篇
第5章 卷积操作 / 46
5.1 卷积的概念 / 46
5.2 卷积模糊 / 49
5.3 自定义滤波 / 53
5.4 梯度提取 / 56
5.5 边缘发现 / 59
5.6 噪声与去噪 / 61
5.7 边缘保留滤波 / 64
5.8 锐化增强 / 66
5.9 小结 / 68
第6章 二值图像 / 70
6.1 图像阈值化分割 / 70
6.2 全局阈值计算 / 72
6.3 自适应阈值计算 / 76
6.4 去噪与二值化 / 77
6.4.1 去噪对二值化的影响 / 77
6.4.2 其他方式的二值化 / 78
6.5 小结 / 79
第7章 二值分析 / 80
7.1 二值图像分析概述 / 80
7.2 连通组件标记 / 82
7.3 轮廓发现 / 85
7.3.1 轮廓发现函数 / 85
7.3.2 轮廓绘制函数 / 87
7.3.3 轮廓发现与绘制的示例
代码 / 87
7.4 轮廓测量 / 88
7.5 拟合与逼近 / 90
7.6 轮廓分析 / 95
7.7 直线检测 / 97
7.8 霍夫圆检测 / 99
7.9 最大内接圆与最小外接圆 / 101
7.10 轮廓匹配 / 102
7.11 最大轮廓与关键点编码 / 104
7.12 凸包检测 / 106
7.13 小结 / 107
第8章 形态学分析 / 108
8.1 图像形态学概述 / 108
8.2 膨胀与腐蚀 / 109
8.3 开/闭操作 / 111
8.4 形态学梯度 / 113
8.5 顶帽与黑帽 / 115
8.6 击中/击不中 / 116
8.7 结构元素 / 119
8.8 距离变换 / 120
8.9 分水岭分割 / 121
8.10 小结 / 124
第9章 特征提取 / 125
9.1 图像金字塔 / 125
9.1.1 高斯金字塔 / 125
9.1.2 拉普拉斯金字塔 / 128
9.1.3 图像金字塔融合 / 129
9.2 Harris角点检测 / 131
9.3 shi-tomas角点检测 / 133
9.4 亚像素级别的角点检测 / 135
9.5 HOG特征与使用 / 137
9.5.1 HOG特征描述子 / 137
9.5.2 HOG特征行人检测 / 139
9.6 ORB特征描述子 / 140
9.6.1 关键点与描述子提取 / 140
9.6.2 描述子匹配 / 144
9.7 基于特征的对象检测 / 148
9.7.1 单应性矩阵计算方法 / 148
9.7.2 特征对象的位置发现 / 150
9.8 小结 / 152
第10章 视频分析 / 153
10.1 基于颜色的对象跟踪 / 153
10.2 视频背景分析 / 155
10.3 帧差法背景分析 / 157
10.4 稀疏光流分析法 / 158
10.5 稠密光流分析法 / 161
10.6 均值迁移分析 / 163
10.7 小结 / 166
第11章 机器学习 / 167
11.1 KMeans分类 / 167
11.1.1 KMeans图像语义
分割 / 167
11.1.2 提取主色彩构建色卡 / 170
11.2 KNN分类 / 172
11.2.1 KNN函数支持 / 172
11.2.2 KNN实现手写数字
识别 / 173
11.3 SVM分类 / 175
11.3.1 SVM的原理与分类 / 175
11.3.2 SVM函数 / 176
11.3.3 SVM实现手写数字
识别 / 176
11.4 SVM与HOG实现对象检测 / 177
11.4.1 数据样本特征提取 / 178
11.4.2 SVM特征分类 / 179
11.4.3 构建SVM对象检测器 / 179
11.5 小结 / 181
第12章 深度神经网络 / 182
12.1 DNN概述 / 182
12.2 图像分类 / 183
12.3 对象检测 / 186
12.3.1 SSD对象检测 / 187
12.3.2 Faster-RCNN对象
检测 / 188
12.3.3 YOLO对象检测 / 190
12.4 ENet图像语义分割 / 193
12.5 风格迁移 / 195
12.6 场景文字检测 / 197
12.7 人脸检测 / 199
12.8 小结 / 201
高级与实战篇
第13章 YOLO 5自定义对象
检测 / 204
13.1 YOLO 5对象检测框架 / 204
13.2 YOLO 5对象检测 / 205
13.3 自定义对象检测 / 208
13.3.1 数据集制作与生成 / 209
13.3.2 模型训练与查看损失
曲线 / 210
13.3.3 模型导出与部署 / 211
13.4 小结 / 212
第14章 缺陷检测 / 213
14.1 简单背景下的缺陷检测 / 213
14.2 复杂背景下的缺陷检测 / 216
14.2.1 频域增强的缺陷检测 / 216
14.2.2 空间域增强的缺陷检测 / 219
14.3 案例:刀片缺陷检测 / 220
14.4 基于深度学习的缺陷检测 / 222
14.4.1 基于分类的缺陷检测 / 223
14.4.2 基于分割的缺陷检测 / 226
14.5 小结 / 228
第15章 OpenVINO加速 / 229
15.1 OpenVINO框架安装与环境
配置 / 229
15.1.1 OpenVINO安装 / 230
15.1.2 配置C++开发支持 / 232
15.2 OpenVINO2022.x版SDK
推理演示 / 233
15.2.1 推理SDK介绍 / 234
15.2.2 推理SDK演示 / 235
15.3 OpenVINO支持UNet部署 / 236
15.4 OpenVINO支持YOLO 5
部署 / 237
15.5 小结 / 239
第16章 CUDA加速 / 240
16.1 编译OpenCV源码支持CUDA
加速 / 240
16.2 用CUDA加速传统图像处理 / 245
16.2.1 Mat与GpuMat / 245
16.2.2 加速图像处理与视频
分析 / 246
16.3 加速DNN / 248
16.4 小结 / 249
温馨提示:请使用员工书屋的读者帐号和密码进行登录