搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
出版时间 :
无库存
基于统计学习的时空动力系统建模(英文)
0.00     定价 ¥ 128.00
浙江图书馆
  • ISBN:
    9787030634658
  • 作      者:
    宁瀚文
  • 出 版 社 :
    科学出版社
  • 出版日期:
    2020-04-01
收藏
内容介绍
随机偏微分方程的系统辨识是利用随机分布参数系统的观测数据去重构描述这个系统的未知的随机偏微分方程,它可以看作是对随机偏微分方程的"反向"的研究。偏微分动力学系统的辨识与建模是一个比较前沿,综合性的研究方向。本书对这个方向的研究成果进行了综述,对作者已有的一些重要工作进行了总结与延深,并为相关未来的研究提供有益的启迪。
展开
目录
Contents 
Preface 
Chapter 1 Overview of Statistical Learning Methods 1 
1.1 A brief introduction of statistical learning 1 
1.2 Linear model 10 
1.2.1 Linear regression model 10 
1.2.2 Regularized linear regression 12 
1.2.3 Reproducing kernel model 18 
References 34 
Chapter 2 Online Kernel Learning of Nonlinear Spatiotemporal Systems 38 
2.1 Motivation of this chapter 38 
2.2 Discretization and lattice dynamic systems 40 
2.3 MIMO partially linear model 42 
2.4 The PM-RLS-SVM for MIMO partially linear systems 44 
2.5 Numerical simulations and some discussions 53 
2.6 Summary 70 
References 71 
Chapter 3 Learning of Partially Known Nonlinear Stochastic Spatiotemporal Dynamical Systems 75 
3.1 Motivation of this chapter 75 
3.2 Reproducing kernel methods for partially linear models 78 
3.3 The extended partially linear model for SPDE 80 
3.4 Extended partially ridge regression 84 
3.5 Simulations and comparison 92 
3.6 Summary 100 
References 101 
Chapter 4 Learning of Nonlinear Stochastic Spatiotemporal Dynamical Systems 105 
4.1 Motivation of this chapter 105 
4.2 Stochastic evolution equation and approximation error of FEM 107 
4.3 Learning framework and the kernel learning method 115 
4.4 Learning with irregular observation data 121 
4.5 Simulations and comparison 126 
4.6 Summary 133 
References 134 
Chapter 5 Learning of Nonlinear Spatiotemporal Dynamical Systems with Non-Uniform Observations 139 
5.1 Motivation of this chapter 139 
5.2 Discretization and non-uniform sampling problem 141 
5.3 A multi-step learning method with non-uniform sampling data 144 
5.4 Inverse meshless collocation model and learning algorithm 156 
5.5 Numerical example 164 
5.6 Summary 170 
References 171 
Chapter 6 Online Learning of Nonlinear Stochastic Spatiotemporal System with Multiplicative Noise 176 
6.1 Motivation of this chapter 176 
6.2 Discretization and heterogeneous partially linear model 178 
6.3 Error dynamical system of PLM 184 
6.4 Robust optimal control algorithm for error dynamical system 191 
6.5 Numerical examples 198 
6.6 Summary 205 
References 206 
Chapter 7 Robust Online Learning Method Based on Dynamical Linear Quadratic Regulator 211 
7.1 Motivation of this chapter 211 
7.2 Benchmark online learning methods 213 
7.3 Online learning framework 217 
7.4 Robust online learning method based on LQR 220 
7.5 The online learning in kernel spaces 225 
7.6 Numerical examples 231 
7.7 Summary 241 
References 242
Chapter 8 Approximate Controllability of Nonlinear Stochastic Partial Di.erential Systems 246 
8.1 Motivation of this chapter 246 
8.2 Basic concepts and preliminaries 247 
8.3 The controllability results 250 
8.4 Illustrative example 271 
8.5 Summary 273 
References 273
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

温馨提示:请使用浙江图书馆的读者帐号和密码进行登录

点击获取验证码
登录