搜索
高级检索
高级搜索
书       名 :
著       者 :
出  版  社 :
I  S  B  N:
出版时间 :
无库存
线性代数学习与提高
0.00     定价 ¥ 32.00
湖州市图书馆
此书还可采购4本,持证读者免费借回家
  • ISBN:
    9787030729163
  • 作      者:
    肖海军,李卫峰
  • 出 版 社 :
    科学出版社
  • 出版日期:
    2022-08-01
收藏
精彩书摘
第一章 矩阵
  在线性代数中,矩阵是十分重要的工具,同时它在自然科学与工程技术领域也有着广泛的应用.
  第一节 矩阵的概念矩阵的运算分块矩阵
  一、知识要点
  1.特殊矩阵
  (1)零矩阵O.
  (2)单位矩阵E.
  (3)标量矩阵.
  (4)对角矩阵.
  (5)上(下)三角矩阵.
  (6)对称矩阵(AT=A).
  (7)反对称矩阵(AT=-A).
  2.矩阵的线性运算
  (1)加法:同型矩阵A=ij×n,B=ij×n,定义其加法.
  (2)数量乘法:数k与矩阵A的乘积定义为.
  3.矩阵的乘法
  设
  矩阵乘法满足的运算律:设A,B,C为同型矩阵,k为数,则;
  (1)
  (2)
  (3)
  注(1)矩阵A与B只有当A的列数与B的行数相等时才能相乘;
  (2)矩阵的运算与数的运算规律有些是相同的,但也有许多不同之处,读者学习时需注意比较二者的差异.
  4.方阵的幂
  k个n阶方阵A连乘称为方阵A的k次幂,记作Ak,即
  5.矩阵的转置设,将A的行列互换后得到的矩阵称为A的转置,记作AT,即
  矩阵的转置满足的运算律:设A,B为矩阵,k为数,则.
  6.分块矩阵的概念
  将矩阵A用若干横线和竖线分成很多小矩阵(称为A的子块),以子块为元素的矩阵称为分块矩阵.分块矩阵的运算规则与普通矩阵的运算规则类似.
  7.分块矩阵的运算
  (1)加法:对同型矩阵用相同的方法进行分块为,其中A,B为同型矩阵,则.
  (2)数乘:将矩阵分块为,则.
  (3)乘法:矩阵分别分块为其中矩阵,是矩阵,则,其中.
  8.分块对角矩阵.
  二、典型例题
  例1设矩阵,计算.
  解
  注 本题利用矩阵的加法和乘法可直接运算,但计算量较大.这里利用乘法对加法的分配律先化简、再代入计算.矩阵的运算与数的计算不同的地方是矩阵的乘法对加法的分配律有两种:左分配律和右分配律.因为矩阵没有乘法交换律,所以左分配律和右分配律是有区别的,于是提取公因子不能颠倒相乘矩阵的左右次序.总之,在类似的矩阵运算中,应注意矩阵运算与数的运算的区别.
  例 2n阶矩阵A,B满足,证明:AB=O.
  证由
  得
  又
  所以.
  用A分别左乘、右乘AB+BA=O等式两边,并利用A2=A,得
  两式相减得AB=BA,再利用AB+BA=O,所以AB=O.
  注 在矩阵运算中,AB不一定等于BA,若两者相等,则称A与B可交换.
  例3已知,其中α是α的转置,计算.
  分析本题的关键是利用矩阵乘法的结合律,并注意到αTβ是矩阵,而βαT是数.
  解
  例4设.
  解
  例5证明:如果A是实对称矩阵且2=,那么.
  证 设实对称矩阵
  例6设求A.
  解设,则.
  学号:班级:姓名:
  三、练习题1
  A类
  一、判断题
  1.设A,B为n阶方阵,则.()
  2.设,阶阵,且,则.()
  3.设,则必有.()
  4.设,阶方阵,已知AB=O,则.()
  二、填空题
  1.设矩阵A=()a,B=(b),则矩阵A与B可作加法的条件是,可作乘法AB的条件是.
  2.设,则.
  3.设,则
  4.若,则.
  5.若,则.
  三、单项选择题
  1.设A是mn矩阵,B是np×矩阵,矩阵,C是pm则下列运算不可行的是()
  (A) (B) (C) (D)
  2.设A是mn矩阵,B是矩阵,则下列()的运算结果是n阶方阵.
  (A) (B) (C) (D)
  3.设,阶方阵,满足关系O,则必有().
  (A) (B) (C) (D)
  4.设A是n(3)阶的方阵,为常数,是其伴随矩阵,k则.
  (A) (B) (C) (D)
  5.设A为n阶方阵,且a0,则
  (A) (B) (C) (D)
  四、计算题
  1.设.
  2.设.
展开
目录
目录
第一章 矩阵 1
第一节 矩阵的概念矩阵的运算分块矩阵 1
第二节 矩阵的初等变换与初等矩阵 9
第三节 行列式 13
第四节 逆矩阵 27
第五节 矩阵的秩 37
第二章 线性方程组 43
第一节 线性方程组的概念和高斯消元法 43
第二节 n维向量 53
第三节 向量组的线性相关性 57
第四节 向量组的秩和*大线性无关组 65
第五节 向量空间 71
第六节 n维向量空间的正交性 77
第七节 线性方程组解的结构 83
第三章 矩阵的特征值和特征向量 93
第一节 特征值与特征向量的概念与计算 93
第二节 相似矩阵实对称矩阵的相似对角化 99
第四章 二次型 111
第一节 二次型及其矩阵表示化二次型为标准形 111
第二节 正定二次型 119
第五章 线性空间与线性变换 125
第一节 线性空间的定义与性质 125
第二节 维数、基与坐标基变换与坐标变换 133
第三节 线性变换的基本概念线性变换的矩阵表示式 139
参考答案 143
展开
加入书架成功!
收藏图书成功!
我知道了(3)
发表书评
读者登录

温馨提示:请使用湖州市图书馆的读者帐号和密码进行登录

点击获取验证码
登录