《电磁波时程精细积分法》:
最后,值得一提的是无单元法,它只需节点信息,不需单元信息,从而摆脱了单元的限制。对于诸如小气隙、薄板介质、运动线圈等特殊问题,有限元网格剖分困难,计算精度难以保证,无单元法却能作为有限元法一个有力的补充。
总之,有限元法以其独特的优点,在稳态电磁场数值分析领域中越来越占据着主导地位。时至今日,有限元法在理论上也还在发展,其数值处理技术也在不断地提高。特别是新兴、交叉学科发展给电磁场有限元数值分析提出了许多新的要求,赋予了其很广阔的研究和应用前景。
1.2.3边界元法
上面所讨论的矩量法和有限元法都可称为区域型方法。这些方法所选择的试探函数完全地或局部地满足问题的边界条件,而在所求解问题的区域中用这些试探函数去逼近区域内微分方程。对于非均匀介质或各向异性介质中的场以及某些非线性问题,应用有限元法都可以得到比较精确的数值计算结果。但是,真正要说有限元法是十全十美的以及可以运用于相当广阔的领域,这却是言过其实的。首先,有限元法作为一种区域型方法,它需要将区域离散化,导致需要组成复杂的数据结构以及求解大型代数方程组占用过多的机时问题等。特别是使用有限元法求解三维问题就更困难了。其次,对于无界域问题,由于计算域延拓至无穷时导致其上边界条件处理的困难,使得难以对有限元法计算结果的误差进行控制。在这种情况下,人们不断地寻求和发展新的方法,边界元法就是一种与有限元法这种区域型方法相对应的方法。边界元法是一种边界型方法,它所选择的试探函数满足区域内的微分方程,但并不满足边界条件,而后再用这些函数去逼近边界条件。
边界元法是由英国Southampton大学土木工程系于20世纪70年代首创的。它可以理解成边界积分法和有限元法的混合技术,即将边界广义位移和广义力作为独立变量,且同时以满足场方程的奇异函数为加权函数,采用加权余量法把微分方程变成感兴趣边界上的积分方程,然后通过类似于有限元法中应用的离散化过程进行求解。不严格地说,边界元法就是解边界积分方程的有限元法。它把区域的边界分割成许多单元,像有限元那样选取在各个单元上的插值函数,可以具有各种形式。与以前的积分方程近似解法所采用的点匹配法不同,边界元法没有把独立变量集中到区域边界的许多点上,而现在没有这个限制,这一点是很重要的。
……
展开