1.本卷研究了当前的神经网络技术,包括ReLU 激活、随机梯度下降、交叉熵、正则化、Dropout 和可视化;
2.丰富的示例代码和在线资源,方便动手实践与拓展学习;
3.提供在线实验环境;
4.全彩印刷;
5.《人工智能算法 卷3 深度学习和神经网络》是系列图书第3本,卷1《人工智能算法 卷1 基础算法》、卷2《人工智能算法 卷2 受大自然启发的算法》已在人民邮电出版社出版;。
自人工智能的早期阶段以来,神经网络就扮演着至关重要的角色。现在,令人兴奋的新技术,例如深度学习和卷积,正在将神经网络带向一个全新的方向。本书结合各种现实世界任务中的神经网络应用,例如图像识别和数据科学,介绍了当前的神经网络技术,包括ReLU激活、随机梯度下降、交叉熵、正则化、Dropout和可视化。
本书的目标读者是那些对人工智能感兴趣,但苦于没有良好的数学基础的人。读者只需要对大学代数课程有基本了解即可。本书为读者提供配套的示例程序代码,目前已有Java、C#和Python版本。
推荐阅读:
《人工智能算法(卷1):基础算法》ISBN:9787115523402
《人工智能算法(卷2):受大自然启发的算法》ISBN:9787115544315
展开